A Low-Noise High-Dynamic Range Charge Sensitive Amplifier for Gas Particle Detector Pixel Readout LSIs
スポンサーリンク
概要
- 論文の詳細を見る
Recent attempts to directly combine CMOS pixel readout chips with modern gas detectors open the possibility to fully take advantage of gas detectors. Those conventional readout LSIs designed for hybrid semiconductor detectors show some issues when applied to gas detectors. Several new proposed readout LSIs can improve the time and the charge measurement precision. However, the widely used basic charge sensitive amplifier (CSA) has an almost fixed dynamic range. There is a trade-off between the charge measurement resolution and the detectable input charge range. This paper presents a method to apply the folding integration technique to a basic CSA. As a result, the detectable input charge dynamic range is expanded while maintaining all the key merits of a basic CSA. Although folding integration technique has already been successfully applied in CMOS image sensors, the working conditions and the signal characteristics are quite different for pixel readout LSIs for gas particle detectors. The related issues of the folding CSA for pixel readout LSIs, including the charge error due to finite gain of the preamplifier, the calibration method of charge error, and the dynamic range expanding efficiency, are addressed and analyzed. As a design example, this paper also demonstrates the application of the folding integration technique to a Qpix readout chip. This improves the charge measurement resolution and expands the detectable input dynamic range while maintaining all the key features. Calculations with SPICE simulations show that the dynamic range can be improved by 12dB while the charge measurement resolution is improved by 10 times. The charge error during the folding operation can be corrected to less than 0.5%, which is sufficient for large input charge measurement.
著者
-
Li Fei
Department of Pharmacology, Zunyi Medical College
-
Miyahara Masaya
Department Of Physical Electronics Tokyo Institute Of Technology
-
Matsuzawa Akira
Department Of Physical Electronics Graduate School Of Science And Engineering Tokyo Institute Of Technology
関連論文
- A Study on Fully Digital Clock Data Recovery Utilizing Time to Digital Converter(Analog Circuits and Related SoC Integration Technologies)
- A Multi-Stage 60GHz CMOS LNA Using Dual Noise-Matching Technique
- A De-Embedding Method Using Different-Length Transmission Lines for mm-Wave CMOS Device Modeling
- Evaluation of a Multi-Line De-Embedding Technique up to 110GHz for Millimeter-Wave CMOS Circuit Design
- Analysis of CMOS Transconductance Amplifiers for Sampling Mixers
- Spatial Sensitivity of Capacitors in Distributed Resonators and Its Application to Fine and Wide Frequency Tuning Digital Controlled Oscillators
- Resveratrol Attenuates Neuroinflammation-mediated Cognitive Deficits in Rats
- Analysis of Phase Noise Degradation Considering Switch Transistor Capacitances for CMOS Voltage Controlled Oscillators
- A Wide-Tunable LC-Based Voltage-Controlled Oscillator Using a Divide-by-N Injection-Locked Frequency Divider
- The Optimum Design Methodology of Low-Phase-Noise LC-VCO Using Multiple-Divide Technique
- An 8-Bit 600-MSps Flash ADC Using Interpolating and Background Self-Calibrating Techniques
- A Performance Model for the Design of Pipelined ADCs with Consideration of Overdrive Voltage and Slewing
- The Effects of Switch Resistances on Pipelined ADC Performances and the Optimization for the Settling Time(Analog Circuits and Related SoC Integration Technologies)
- Design Challenges of Analog-to-Digital Converters in Nanoscale CMOS(Analog and Communications,Low-Power, High-Speed LSIs and Related Technologies)
- Analysis and Design of Direct Reference Feed-Forward Compensation for Fast-Settling All-Digital Phase-Locked Loop(Analog and Communications,Low-Power, High-Speed LSIs and Related Technologies)
- Compensation techniques for integrated analog device issues
- Wiring technology for analog and mixed signal LSIs
- Mixed Signal SoC Era(Analog Circuit and Device Technologies)
- Measurement of Integrated PA-to-LNA Isolation on Si CMOS Chip
- A 14.3% PAE parallel class-A and AB 60GHz CMOS PA
- Tunable CMOS Power Amplifiers for Reconfigurable Transceivers
- Two-Stage Band-Selectable CMOS Power Amplifiers Using Inter-Stage Frequency Tuning
- A Dual-Conduction Class-C VCO for a Low Supply Voltage
- A 24 dB Gain 51-68 GHz Common Source Low Noise Amplifier Using Asymmetric-Layout Transistors
- Inter-Stage Tunable Notch Filter for a Multi-Band WCDMA Receiver
- A Wideband Common-Gate Low-Noise Amplifier Using Capacitive Feedback
- A 24dB Gain 51-68GHz Common Source Low Noise Amplifier Using Asymmetric-Layout Transistors
- An Analysis on a Dynamic Amplifier and Calibration Methods for a Pseudo-Differential Dynamic Comparator
- A 0.5-V, 0.05-to-3.2GHz LC-Based Clock Generator for Substituting Ring Oscillators under Low-Voltage Condition
- Evaluation of L-2L De-Embedding Method Considering Misalignment of Contact Position for Millimeter-Wave CMOS Circuit Design
- A 83-dB SFDR 10-MHz Bandwidth Continuous-Time Delta-Sigma Modulator Employing a One-Element-Shifting Dynamic Element Matching
- Design of Interpolated Pipeline ADC Using Low-Gain Open-Loop Amplifiers
- A 20GHz Push-Push Voltage-Controlled Oscillator Using Second-Harmonic Peaking Technique for a 60GHz Frequency Synthesizer
- A Low-Noise High-Dynamic Range Charge Sensitive Amplifier for Gas Particle Detector Pixel Readout LSIs
- A Study of Stability and Phase Noise of Tail Capacitive-Feedback VCOs
- Design of CMOS Low-Noise Analog Circuits for Particle Detector Pixel Readout LSIs
- A Time-Domain Architecture and Design Method of High Speed A-to-D Converters with Standard Cells
- Evaluation of L-2L De-Embedding Method Considering Misalignment of Contact Position for Millimeter-Wave CMOS Circuit Design
- Ultra-Low-Voltage Dynamic Amplifier
- A 12-bit Interpolated Pipeline ADC Using Body Voltage Controlled Amplifier
- C-12-32 A Current-Reuse Class-C VCO using Dynamic Start-up Circuits