シミュレーションによる都市人口の解析
スポンサーリンク
概要
- 論文の詳細を見る
We have many models for explanation of existence of the rank-size rule of city. Among them, we have some models in which statistical principles are applied. They are proposed by Berry, Curry, and Fano. Berry pointed out that the distribution of city size (population of city) is truncated lognormal, and when the distribution of city size is such a distribution, the rank-size rule will be applied to the population of cities. Curry applied the information theory to explanation of existence of the rank-size rule. According to the Curry's model, when the entropy of the state of distribution of population in cities become maximum, the relation between city size and the rank will be expressed by rank- size rule. Fano, giving his criticism to the Curry's theory, proposed his theory constructed by transition matrix which expressed the probability of transition of city size from a grade of city size to another. In this paper, the new type of model is proposed based on the law proportionate effect (laloi de l'effet proportional) insisted by R. Gibrat. In this model, the population of a city or a city size at the end of the nth period P_n is expressed by P_n=D_0П^^n__<t=1>(1+d_t)A_0П^^n__<t=1>(1+a_t) (1) where D_t and A_t (t=1,2,……, n) are the population density and the area of a city at the beginning of the t+1st period, respectively, and d_t and a_t (t=1,2,……, n) are the increase ratio of the population density and the area of a city during the tth period. Equation (1) is rewritten as P_n=D_mП^^n__<t=m+1>(1+d_t)A_m П^^n__<t=m+1> (1+a_t) (2) If population density of each city does not change so widely from the m+1st period to the nth period and a_t is affected by D_m (exactly saying, the latter supposition should be expressed by the words that "a_t is affected by D_m, D_<m+1>,……, D_n" but it may be said that a_t is affected by D_m, by the former supposition: "population density of each city does not change so widely,"), the distribution of the product A_m П^^n__<t=m+1>(1+a_t) will be influenced by D_m or D_mП^^n__<t=m+1>(1 d_t) which is equal to D_n. Then, we can write the following expression: P_n=D_<ns>A_<ns> (s=1,2,…… , k) (3) where D_<ns> is D_n which belongs to the sth class of D_n and A_<ns> is a A_n of a city which has a population density D_n which belongs to the sth class of D_n (D_<ns>). The reason why a_t is influenced by D_n is that at should be a function of mobility of persons M of a city and D_n is the index of the mobility. In equation (3), we have two elements, D_<ns> and A_<ns>. The distribution of D_n which consists of D_<ns> (s=1,2,……, k) should be approximately lognormal or unimodal by the central limit theorem, and that of A_<ns> should be also approximately lognormal or unimodal. Using these property, we can try to perform a simulation of generation of city population. A city population is generated by the following steps: 1st step: Determination of population density of a city, D_n^1. We choose one D_n randomly using the distribution of D_n. And the D_n chosen is denoted by D_n^1. 2nd step: Classificat on of the D_n^1. We find the class to which the D_n^1. belongs, and the class is denoted by s_1. And the D_n^1 is denoted by D_<ns1> when we want to express the fact that the D_n^1 belongs to the class s_1. 3rd step: Determination of area of a city, A_<ns1>^1. We choose one A_<ns> randomly using the distribution of A_<ns1> which is the area of cities which have population densities belonging to the class s_1. And the A_<ns> is denoted by A_<ns1>^1. 4th step: Generation of population of a city, P_<ns1>^1. We generate a population of a city P_<ns1>^1 by the equation: P_<ns1>^1=D_n^1A_<ns1>^1. And we regard the P_<ns1>^1 as a population generated by the 1st trial, P_n^1. 5 th step: Generation of populations P_n^t. We generate W city populations P_n^t (t=1,2,……, W) by the process which consists of 4 steps from the 1st step to the 4th step, where P_n^t is a population generated by the tth trial. Using the W city populations, the relation between the city size (city population) and the rank was observed. According to the relation observed, we could conclude that the rank size rule was found in the city population generated by the simulation. On the other hand, the relation between the city population whose distribution is lognormal and the rank was not described by the rank size rule. This fact is very important because this fact shows that in the city populations which generate by the law of proportionate effect, the rank-size rule is not found.
- 流通経済大学の論文
著者
関連論文
- リューベン・グロナウ, 『旅客輸送における時間価値 : 航空旅行の需要』
- コスタリカ共和国の鉄道史の記録に関する一考察
- 時系列の反復平滑化法:テューキイの方法の一般化
- 人口学の一分野としての「空間人口学」の成立の可能性
- 人口中心によるわが国の人口移動および人口分布の解析
- 事務研究序説(II) : 試行実態調査の実施結果
- Donald R. McNeil, Interactive Data Analysis, A Practical Primer, New York, John Wiley & Sons, 1977, ix+186pp.
- 人口密度増加率曲線の形態について
- 多重市場地域の存在に関する理論的考察
- 地域的人口分布の変化の特徴を示すための定量的指標について
- 標本比率の分散に関する一考察
- ロジャースの地域別人口分析法とその方法のわが国における地域別人口の構造分析への適用
- コスタリカ共和国の交通システムの現況とその解析
- The Characteristics of the Changes of the Distribution of Population of Cohorts in Japan
- 人口の空間的分布の位置の変化に関する統計的指標について : 地域的人口資料の統計的解析
- 森林評価の一方法
- 都市内人口分布の解析とシミュレーション
- シミュレーションによる交通流の解析
- 人口中心点の研究の歴史的考察
- 情報と物的流通
- グラフにおけるminimax, maximin, maximum, minimum点 : 廃棄物処理施設の建設地点に関する考察
- シミュレーション・モデルによって得られた波動的変動をもつ個体群成長曲線
- 第2部 わが国のコーホートの地域的分布の変化について(人口構造の変化が社会経済構造に及ぼす影響に関する研究,共同研究)
- 人口構造の変化が社会経済構造に及ぼす影響について : 年齢別人口構造と地域的所得格差(研究会報告要旨)
- 休閑地ならびに海岸砂丘にみられる植物の空間的分布様式の解析
- 計量経済学的モデルによる地域的労働力人口変動の解析 : わが国およびアメリカ合衆国の地域的労働力人口の解析
- 空間現象の統計的解析のための1方法
- ファーネス法によるOD表の修正における2,3の問題について
- 移動の効用関数を導入したモデルによる地域的人口変動の解析
- 誘導型を通して見いだされる最終型の性質について : モデルの3形態,構造型,誘導型,および最終型の体系化
- 増殖過程の微視的構造から得られた波動的成長曲線
- 都市と道路の相互関係についての定量的解析(10周年記念号)
- 郵便物交流量の解析
- モデルによる地域的人口再配分の定量的解析
- エントロピーによる景観構造の定量的観察
- シミュレーションによる都市人口の解析
- 廃棄物の発生と対策(廃棄物をめぐる諸問題)
- 予測結果の評価に関する一考察
- ダイナミック・プログラミングの廃棄物運搬計画への適用
- わが国労働力人口の地域的分布の計量経済学的解析
- 都市人口の分布の型とその発生機構について : 都市人口密度への対数正規分布のあてはめ
- 廃棄物の発生機構とその処理計画に関する一考察
- 地域間物資輸送構造とその安定性に関する一考察
- 地域的人口変動の計量経済学的解析
- リニアー・プログラミングの東京都心部のゴミ処理計画への適用
- 経済変動と物資輸送量
- フィリピン北部における道路建設の経済効果の測定
- 引力モデルの一般化とその成立機構
- 新規就業若年労働力の地域間移動
- 都市人口にみられるZipfの順位法則の成立機構
- 地域間貨物輸送量の解析と予測