都市人口の分布の型とその発生機構について : 都市人口密度への対数正規分布のあてはめ
スポンサーリンク
概要
- 論文の詳細を見る
Many discussions on the regularity of the population of cities have been done. R. Gibrat (1931) showed graphically that the distribution of population of cities approximately lognormal distribution. G. K. Zipf (1941) found that the relation between the size P and the rank R of population of cities is expressed by the equation (1. 1)or (1. 2), where A and a are parameters. And W. Christaller discussed on the hierarchical structure of the cities and insisted that the number of the cities which belong to the ith class of cities is K/3^i where K is a constant, and the size (Population) of the cities of the ith class is 3^<i-1>. Moreover, in 1958, M. Beckmann analysed the construction of the populations in urban and rural areas by a model, and obtained the population of cities which is shown by equation (1.5), where p_m is the population of cities which belong to the mth class counted from the class of smallest size of cities, and k, s and r are constants. On the other hand, B. J. L. Berry insisted that when the distribution of population of cities is truncated lognormal distribution, we can get the Zipf's rank size rule. Berry and W. L. Garrison showed that the Christaller's law and Zipf's rank-size rule are substantially equal to each other. And John B. Parr discussed on the relation between Beckmann's model and Zipf s rank size rule adding his comment to the Beckmann's model. In this paper, the present author discussed on the type of distribution of population of cities using the Japanese data of 1968. If the mechanism of growing of population of cities is expressed by the equation (2.1) where P_K is the population of cities at the beginning of the kth period of time and ΔPk is the increment of the population of cities during the kth period (k=0,1,2……,n), then the distribution of population of cities would be normal distribution. But, we could not find the normal distribution of population of cities in Japanese data, as shown in Figure 1. The distribution is skewed very strongly to right. If the mechanism is expressed by the equation (2.4) where p_i is the increase rate of population of cities during the ith period (i=1,2,……, n),the distribution of logarithm of population of cities would be normal distribution, in other words, the distribution would be lognormal distribution, as suggessed by Gibrat. But, unfortunately the actual distribution of population of cities in Japan was not expressed by a lognormal distribution as shown by Figure 2. Incidentally, the Zipf's rank-size rule was found in Japanese data, as shown in Figure 3. Moreover, we could also find the rule in two parts of Japan, the East and West Japan which are defined in Figure 4 and 5. Therefore, we can get the conclusion that "if the distribution of logarithm of population of cities is unimodal distribution (Figure 2, 7, and 8), we would be able to find the Zipf's rank-size rule". This means that we can get the Zipf's rank-size rule under the more relaxed condition than Berry's one according to which the distribution of population must be truncated lognormal distribution. Although the Zipf s rank-size rule was successfully applied to the distribution of population of cities in Japan, the mechanism of growing of population of cities are not explained so clearly. As a matter of fact, the Mandelbrot's model and Miller's model for the existence of the Zipf's rank-size rule are not adequate for the explanation of the existence of the rule in population of cities. And the Simon's model is also inadequate, because the frequency distribution of logarithm of the population of cities should be J-shaped distribution according to the Simon's model, while the actual distribution was not a J-shaped distribution but a unimodal distribution. Therefore, the present author constructed the model of changing of population density of cities expressed by the equation (4.6) instead of constructing the model of growing of population of cities itself. In equation (4.6) D_k is the population density of a city at the beginning of the kth period (k=0,1,2,……, n), A_k is the area of a city at the begining of the kth peiod (k=0,1,2,……, n) P_i is the increase rate of the population of a city during the ith period(i=1,2,……, n) and at is the increase rate of the area of a city during the ith period. According to this model, the distribution of population density of cities should become lognormol distribution by the central limit theorem. However, the actual distribution of population density of cities in Japan was not lognormal distribution (Figure 9). But, fortunately, when we divided the cities of all Japan into 4 groups ; (1)the cities whose populations are less than 50,000 in the East Japan, (2)the cities whose populations are 50,000 and over in the East Japan, (3)the cities whose populations are less than 50,000 in the West Japan, and (4)the cities whose population are 50,000 in the West Japan, we could find the fact that the lognormal distribution was successfully applied to each distribution of the 4 groups of population density of cities (Figure 14-17). This fact shows that the mechanism of the changing of population density of cities of the 4 groups is explained by the equation (4.6) which shows that the population of a city at the beginning of the nth period P_n will be expressed by P_oПp_i and the area of a city at the begining of the nth period A_n will be expressed by A_o Пa_i. It would be very interesting that the mechanism of changing of population density of cities is expressed by the central limit theorem, a general principle in statistics. After it is explained that the distribution of population density of cities of the 4 groups in Japan, in the last part of this paper, the reconstruction of the distribution of population density of all Japan was tried by summing up all the theoretical frequency distributions of population density of the 4 groups of cities (Figure 19). This compound theoretical distribution was successfully applied to the actual distribution Figure 21). This fact is also interesting from the statistical point of view.
- 流通経済大学の論文
著者
関連論文
- リューベン・グロナウ, 『旅客輸送における時間価値 : 航空旅行の需要』
- コスタリカ共和国の鉄道史の記録に関する一考察
- 時系列の反復平滑化法:テューキイの方法の一般化
- 人口学の一分野としての「空間人口学」の成立の可能性
- 人口中心によるわが国の人口移動および人口分布の解析
- 事務研究序説(II) : 試行実態調査の実施結果
- Donald R. McNeil, Interactive Data Analysis, A Practical Primer, New York, John Wiley & Sons, 1977, ix+186pp.
- 人口密度増加率曲線の形態について
- 多重市場地域の存在に関する理論的考察
- 地域的人口分布の変化の特徴を示すための定量的指標について
- 標本比率の分散に関する一考察
- ロジャースの地域別人口分析法とその方法のわが国における地域別人口の構造分析への適用
- コスタリカ共和国の交通システムの現況とその解析
- The Characteristics of the Changes of the Distribution of Population of Cohorts in Japan
- 人口の空間的分布の位置の変化に関する統計的指標について : 地域的人口資料の統計的解析
- 森林評価の一方法
- 都市内人口分布の解析とシミュレーション
- シミュレーションによる交通流の解析
- 人口中心点の研究の歴史的考察
- 情報と物的流通
- グラフにおけるminimax, maximin, maximum, minimum点 : 廃棄物処理施設の建設地点に関する考察
- シミュレーション・モデルによって得られた波動的変動をもつ個体群成長曲線
- 第2部 わが国のコーホートの地域的分布の変化について(人口構造の変化が社会経済構造に及ぼす影響に関する研究,共同研究)
- 人口構造の変化が社会経済構造に及ぼす影響について : 年齢別人口構造と地域的所得格差(研究会報告要旨)
- 休閑地ならびに海岸砂丘にみられる植物の空間的分布様式の解析
- 計量経済学的モデルによる地域的労働力人口変動の解析 : わが国およびアメリカ合衆国の地域的労働力人口の解析
- 空間現象の統計的解析のための1方法
- ファーネス法によるOD表の修正における2,3の問題について
- 移動の効用関数を導入したモデルによる地域的人口変動の解析
- 誘導型を通して見いだされる最終型の性質について : モデルの3形態,構造型,誘導型,および最終型の体系化
- 増殖過程の微視的構造から得られた波動的成長曲線
- 都市と道路の相互関係についての定量的解析(10周年記念号)
- 郵便物交流量の解析
- モデルによる地域的人口再配分の定量的解析
- エントロピーによる景観構造の定量的観察
- シミュレーションによる都市人口の解析
- 廃棄物の発生と対策(廃棄物をめぐる諸問題)
- 予測結果の評価に関する一考察
- ダイナミック・プログラミングの廃棄物運搬計画への適用
- わが国労働力人口の地域的分布の計量経済学的解析
- 都市人口の分布の型とその発生機構について : 都市人口密度への対数正規分布のあてはめ
- 廃棄物の発生機構とその処理計画に関する一考察
- 地域間物資輸送構造とその安定性に関する一考察
- 地域的人口変動の計量経済学的解析
- リニアー・プログラミングの東京都心部のゴミ処理計画への適用
- 経済変動と物資輸送量
- フィリピン北部における道路建設の経済効果の測定
- 引力モデルの一般化とその成立機構
- 新規就業若年労働力の地域間移動
- 都市人口にみられるZipfの順位法則の成立機構
- 地域間貨物輸送量の解析と予測