A Two-Gain-Stage Amplifier without an On-Chip Miller Capacitor in an LCD Driver IC
スポンサーリンク
概要
- 論文の詳細を見る
An LCD Driver IC includes more than 300 buffer amplifiers on a single chip. The phase compensation capacitors (on-chip Miller capacitors) for the amplifiers are more than 1000 pF and occupy a large chip area. This paper describes a two-gain-stage amplifier in which an on-chip Miller capacitor is not used for phase compensation in an LCD Driver IC. In the proposed amplifier, phase compensation is achieved only by a newly introduced zero, which is formed by the load capacitance and a phase compensation resistor connected between the output of the amplifier and the capacitive load. Designs of the phase compensation resistor and the amplifier before compensation are discussed, considering a typical load capacitance range. The test chip was fabricated. The newly introduced zero successfully stabilized the amplifier. The chip area for the amplifier was reduced by 30-40%, compared with our previously reported one. The current consumption of the amplifier was only 5 μA. The experimental results of the fabricated test chip support that the proposed amplifier is suitable to an LCD driver IC with a smaller chip area.
- 社団法人電子情報通信学会の論文
- 2002-08-01
著者
-
ITAKURA Tetsuro
Corporate Research & Development Center, Toshiba Corporation
-
Itakura Tetsuro
Corporate Research & Development Center Toshiba Corporation
-
MINAMIZAKI Hironori
System LSI Division, Semiconductor Company, Toshiba Corporation
-
Minamizaki Hironori
System Lsi Division Semiconductor Company Toshiba Corporation
関連論文
- A Fast f_c Automatic Tuning Circuit with Wide Tuning Range for WCDMA Direct Conversion Receiver Systems(Analog Circuits and Related SoC Integration Technologies)
- A Direct Conversion Receiver for W-CDMA Reducing Current Consumption to 31 mA(RF, Analog Circuit and Device Technologies)
- Phase Compensation Technique for a Low-Power Transconductor(Building Block, Analog Circuit and Device Technologies)
- Phase Compensation Techniques for Low-Power Operational Amplifiers
- A 1.2-V, 12-bit, 200MSample/s Current-Steering D/A Converter in 90-nm CMOS(Analog Circuit Techniques and Related Topics)
- A Low-Power Low-Noise Clock Signal Generator for Next-Generation Mobile Wireless Terminals
- A 2-V_ Linear Input-Range Fully Balanced CMOS Transconductor and Its Application to a 2.5-V 2.5-MHz Gm-C LPF
- A Simple Modeling Technique for Symmetric Inductors(Devices and Circuits for Next Generation Multi-Media Communication Systems)
- A Direct Conversion Receiver Adopting Balanced Three-Phase Analog System
- 1.2V, 24mW/ch, 10bit, 80MSample/s Pipelined A/D Converters
- A 0.9V 1.5mW Continuous-Time ΔΣ Modulator for W-CDMA(Analog Circuit Techniques and Related Topics)
- A Two-Gain-Stage Amplifier without an On-Chip Miller Capacitor in an LCD Driver IC
- A 380-MHz CMOS Linear-in-dB Variable Gain Amplifier with Gain Compensation Techniques for CDMA Systems
- A Gm-C Filter Using Multiple-Output Linearized Transconductors(Analog Circuit Techniques and Related Topics)
- A 380-MHz CMOS Linear-in-dB Variable Gain Amplifier with Gain Compensation Techniques for CDMA Systems(Devices and Circuits for Next Generation Multi-Media Communication Systems)
- A 2-GHz Down-Converter with 3-dB Bandwidth of 600 MHz Using LO Signal Suppressing Output Buffer(Special Section on Analog Circuit Techniques and Related Topics)
- A 36-mW 1.5-GS/s 7-Bit Time-Interleaved SAR ADC Using Source Follower Based Track-and-Hold Circuit in 65-nm CMOS