Fabrication of 10-nm-order block copolymer self-assembled nanodots for high-density magnetic recording (Special issue: Microprocesses and nanotechnology)
スポンサーリンク
概要
- 論文の詳細を見る
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
著者
-
Hosaka Sumio
Department Of Electronic Engineering Gunma University
-
YIN You
Department of Nano-material Systems, Graduate School of Engineering, Gunma University
-
Huda Miftakhul
Department of Production Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
-
Akahane Takashi
Department of Production Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
-
Tamura Takuro
Department of Production Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
関連論文
- Extremely Small Proximity Effect in 30keV Electron Beam Drawing with Thin Calixarene Resist for 20 x 20nm^2 Pitch Dot Arrays
- Ultra Low Operation Current Lateral Phase-Change Memory
- Annealing effect of phase change and current control in phase change channel transistor memory
- Atomic Force Microscopy for High Aspect Ratio Structure Metrology
- Ultrahigh Vacuum Non-Contact Atomic Force Microscope Observation of Reconstructed Si(110) Surface
- Far-Field and Near-Field Optical Readings of under-50nm-Sized Pits : Optics and Quantum Electronics
- Switching Property of Atomic Switch Controlled by Solid Electrochemical Reaction
- Simulation of Proposed Confined-Chalcogenide Phase-Change Random Access Memory for Low Reset Current by Finite Element Modelling
- A Novel Lateral Phase-Change Random Access Memory Characterized by Ultra Low Reset Current and Power Consumption
- Fabrication of 10-nm-order block copolymer self-assembled nanodots for high-density magnetic recording (Special issue: Microprocesses and nanotechnology)
- Multilevel Storage in N-Doped Sb2Te3-Based Lateral Phase Change Memory with an Additional Top TiN Layer
- Finite Element Analysis of Dependence of Programming Characteristics of Phase-Change Memory on Material Properties of Chalcogenides
- Femtogram Mass Biosensor Using Self-Sensing Cantilever for Allergy Check
- Side-Wall Measurement using Tilt-Scanning Method in Atomic Force Microscope
- Highly Precise Atomic Force Microscope Measurement of High-Aspect Nanostructure Free of Probe Bending Error
- Prototype of Atomic Force Cantilevered SNOM Based on Through-The-Lens-Type Optical Lever and Polarized Illumination and Detection System
- Picogram Mass Sensor Using Piezoresistive Cantilever for Biosensor
- Dependences of Electrical Properties of Thin GeSbTe and AgInSbTe Films on Annealing
- Critical-Dimension Measurement using Multi-Angle-Scanning Method in Atomic Force Microscope
- Memory Effect in Metal–Chalcogenide–Metal Structures for Ultrahigh-Density Nonvolatile Memories
- Electrical Properties of Phase Change and Channel Current Control in Ultrathin Phase-Change Channel Transistor Memory by Annealing
- Height Measurement Using High-Precision Atomic Force Microscope Scanner Combined with Laser Interferometers
- Spectroscopic Ellipsometry Measurements for Liquid and Solid InSb around Its Melting Point
- Estimation of Three-Dimensional Atomic Force Microscope Tip Shape from Atomic Force Microscope Image for Accurate Measurement
- Picogram Mass Sensor Using Resonance Frequency Shift of Cantilever