Development of a Fully Integrated Complementary Metal–Oxide–Semiconductor Image Sensor-Based Device for Real-Time In vivo Fluorescence Imaging inside the Mouse Hippocampus
スポンサーリンク
概要
- 論文の詳細を見る
In our previous work, we demonstrated the potential of a complementary metal–oxide–semiconductor (CMOS) imaging device for use in imaging of the mouse brain. We showed that the device is capable of detecting fluorescence signal inside the mouse brain and successfully imaged real-time protease activity inside the hippocampus. In this work, we have improved the imaging device by integrating an excitation light source in the form of an ultraviolet light-emitting diode chip and an injection needle onto the sensor chip. This results in a compact single device imaging system for minimal invasive imaging inside the mouse brain. Also experimental repeatability is improved which enabled us to successful perform calibration of fluorophore concentration using the device. Fluorescence imaging experiments inside the brain phantom as well as in the mouse brain show that the device is capable of real time fluorescence detection. Using the device, we found that diffusion rate of chemical injected into the brain is smaller than 10 pmol/min. This work is expected to lead to the successful use of a CMOS imaging device for the study of the functions of the brain.
- 2007-04-30
著者
-
Shiosaka Sadao
Graduate School Of Materials Science Nara Institute Of Science And Technology
-
Nunoshita Masahiro
Graduate School Of Materials Science Nara Institute Of Science And Technology
-
NG David
Graduate School of Materials Science, Nara Institute of Science and Technology
-
Ohta Jun
Graduate School Of Materials Science Nara Institute Of Science And Technology
-
Tokuda Takashi
Graduate School Of Materials Science Nara Institute Of Science And Technology
-
Tamura Hideki
Graduate Program Of Human Sensing And Functional Sensor Engineering Yamagata University
-
Ohta Jun
Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
-
Ishikawa Yasuyuki
Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
-
Nakagawa Takuma
Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
-
Shiosaka Sadao
Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
-
Nunoshita Masahiro
Graduate School of Material Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
-
Ohta Jun
Graduate School of Material Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
関連論文
- A Vision Chip with Column-Level Amplification of Optical Data Signals for Indoor Optical Wireless Local Area Networks
- Development of a CMOS-based Neural Imaging and Interface Device
- Development of a multi-chip retinal stimulator for in vivo experiments toward retinal prosthesis
- CMOS Optical Polarization Analyzer Chip for μTAS
- A low-voltage PWM CMOS imager with small pixel size using an in-pixel gate-common comparator
- Large scale electrode array based on distributed microchip architecture for retinal prosthesis
- Development of a CMOS Image Sensor for Real Time In Vivo Imaging of the Protease Activity Inside the Mouse Hippocampus
- Optimization of Electrical Stimulus Pulse Parameter for Low-Power Operation of Retinal Prosthetic Device
- A 128×128 Pixel Complementary Metal Oxide Semiconductor Image Sensor with an Improved Pixel Architecture for Detecting Modulated Light Signals
- A CMOS Image Sensor for in vitro and in vivo Imaging of the Mouse Hippocampus
- Flexible and Extendible Neural Stimulation Device with Distributed Multichip Architecture for Retinal Prosthesis
- A Pulse Modulation CMOS Image Sensor with 120dB Dynamic Range and 1nW/cm^2 Resolution for Bioimaging Applications
- A Flexible and Extendible Neural Stimulation Device with Distributed Multi-chip Architecture for Retinal Prosthesis
- Building a Simple Model of a Pulse-Frequency-Modulation Photosensor and Demonstration of a 128×128-pixel Pulse-Frequency-Modulation Image Sensor Fabricated in a Standard 0.35-μm Complementary Metal-Oxide Semiconductor Technology
- A high-sensitive digital photosensor using MOS interface-trap charge pumping
- A Study of Bending Effect on Pulse-Frequency-Modulation-Based Photosensor for Retinal Prosthesis
- Proposal and Preliminary Experiments of Indoor Optical Wireless LAN Based on a CMOS Image Sensor with a High-Speed Readout Function Enabling a Low-Power Compact Module with Large Uplink Capacity(The IEICE Transactions on Communications, Vol.E86-B, No.5)
- Self-Pulsation of a Nd^-Doped Fluoride Fiber Laser Using Tm^-Doped Fiber as a Saturable Absorber(Joint Special Issue on Recent Progress in Optoelectronics and Communications)
- Self-Pulsation of a Nd^-Doped Fluoride Fiber Laser Using Tm^-Doped Fiber as a Saturable Absorber (IEICE Trans., Electron., Vol. E86-C, No. 5, Joint Special Issue on Recent Progress in Optoelectronics and Communications)
- Position-Controlled Si Nanocrystals in a SiO_2 Thin Film Using a Novel Amorphous Si Ultra-Thin-Film "Nanomask" due to a Bio-Nanoprocess for Low-Energy Ion Implantation
- High-density and very small-size a Ge1-xCx nanocrystal assemblies on a Si(100) substrate fabricated using bionanoprocess with proteins "ferritin" and solid source molecular beam epitaxy (Special issue: Solid state devices and materials)
- MBE-grown Ge_C_x nanocrystals by using a novel bio-nanoprocess due to protein "ferritin"
- The development of a multichannel electrode array for retinal prostheses
- Proposal and Preliminary Experiments of Indoor Optical Wireless LAN Based on a CMOS Image Sensor with a High-Speed Readout Function Enabling a Low-Power Compact Module with Large Uplink Capacity ( Recent Progress in Optoelectronics an
- Proposal of Application of Pulsed Vision Chip for Retinal Prosthesis
- Planar Multielectrode Array Coupled Complementary Metal Oxide Semiconductor Image Sensor for In vitro Electrophysiology
- Polarization Analyzing Image Sensor with On-Chip Metal Wire Grid Polarizer in 65-nm Standard Complementary Metal Oxide Semiconductor Process
- Proposal of Application of Pulsed Vision Chip to Retinal Prosthesis
- A Low-Voltage Complementary Metal Oxide Semiconductor Image Sensor Using Pulse-Width-Modulation Scheme for Biomedical Applications
- Microfluid Ejection Device Based on Complementary Metal–Oxide–Semiconductor Technology as an Artificial Synapse
- Potentiometric Dye Imaging for Pheochromocytoma and Cortical Neurons with a Novel Measurement System Using an Integrated Complementary Metal–Oxide–Semiconductor Imaging Device
- Simulation of Multiaxial Angular Velocity Detection Using a Diaphragm Vibratory Gyrosensor
- Development of a Fully Integrated Complementary Metal–Oxide–Semiconductor Image Sensor-Based Device for Real-Time In vivo Fluorescence Imaging inside the Mouse Hippocampus
- Single Phase Drive Ultrasonic Motor Using LiNbO3 Rectangular Vibrator
- Fabrication and Validation of Multichip Neural Stimulator for In vivo Experiments toward Retinal Prosthesis
- Development of Complementary Metal Oxide Semiconductor Imaging Devices for Detecting Green Fluorescent Protein in the Deep Brain of a Freely Moving Mouse
- Complementary Metal--Oxide--Semiconductor Image Sensor with Microchamber Array for Fluorescent Bead Counting
- Multimodal Complementary Metal–Oxide–Semiconductor Sensor Device for Imaging of Fluorescence and Electrical Potential in Deep Brain of Mouse
- A Complementary Metal–Oxide–Semiconductor Image Sensor for On-Chip in Vitro and in Vivo Imaging of the Mouse Hippocampus
- Microchamber Device Equipped with Complementary Metal Oxide Semiconductor Optical Polarization Analyzer Chip for Micro Total Analysis System
- Retinal Stimulation on Rabbit Using Complementary Metal Oxide Semiconductor Based Multichip Flexible Stimulator toward Retinal Prosthesis
- Flexible and Extendible Neural Stimulation Device with Distributed Multichip Architecture for Retinal Prosthesis
- A Study of Bending Effect on Pulse-Frequency-Modulation-Based Photosensor for Retinal Prosthesis
- A New Scheme for Imaging On-Chip Dry DNA Spots using Optical/Potential Dual-Image Complementary Metal Oxide Semiconductor Sensor
- Examination of Sandwich-Type Multidegree-of-Freedom Spherical Ultrasonic Motor
- Measurement of LiNbO3 Rectangular Plate Under Large Vibration Velocity of the First Longitudinal and Second Flexural Modes
- Optimization of Electrical Stimulus Pulse Parameter for Low-Power Operation of Retinal Prosthetic Device