A Low-Voltage Complementary Metal Oxide Semiconductor Image Sensor Using Pulse-Width-Modulation Scheme for Biomedical Applications
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we present a detailed characterization and evaluation of the performance of a source-modulated pulse-width-modulation (PWM) scheme image sensor designed for biomedical applications. The image sensor is based on the PWM readout scheme that we proposed in a previous study. The PWM sensor is equipped with a novel three-transistor PWM pixel to realize low-voltage and high-resolution on-chip bioimaging. We explain the sensor operation and capability of the low-voltage PWM scheme by comparing it with a conventional active pixel sensor (APS). We successfully demonstrate the function of the image sensor with a 1.35 V single power supply voltage. We discuss the characteristics in terms of the effect of the IR drop, tradeoffs, and our evaluation of the capability of the PWM sensor of pixel size for biomedical applications.
- 2009-04-25
著者
-
Shishido Sanshiro
Graduate School of Materials Science, Nara Institute of Science and Technology
-
Ohta Jun
Graduate School Of Materials Science Nara Institute Of Science And Technology
-
Sasagawa Kiyotaka
Graduate School Of Materials Science Nara Institute Of Science And Technology
-
Kagawa Keiichiro
Department Of Information And Physical Sciences Graduate School Of Information Science And Technolog
-
Tokuda Takashi
Graduate School Of Materials Science Nara Institute Of Science And Technology
-
Sasagawa Kiyotaka
Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
-
Ohta Jun
Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
-
Shishido Sanshiro
Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
-
Ohta Jun
Graduate School of Material Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
-
Kagawa Keiichiro
Department of Information and Physical Sciences, Graduate School of Information Science and Technology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
関連論文
- A Thin and Compact Compound-Eye Imaging System Incorporated with an Image Restoration Considering Color Shift, Brightness Variation, and Defocus
- A Vision Chip with Column-Level Amplification of Optical Data Signals for Indoor Optical Wireless Local Area Networks
- Development of a CMOS-based Neural Imaging and Interface Device
- Development of a multi-chip retinal stimulator for in vivo experiments toward retinal prosthesis
- CMOS Optical Polarization Analyzer Chip for μTAS
- A low-voltage PWM CMOS imager with small pixel size using an in-pixel gate-common comparator
- Large scale electrode array based on distributed microchip architecture for retinal prosthesis
- Development of a CMOS Image Sensor for Real Time In Vivo Imaging of the Protease Activity Inside the Mouse Hippocampus
- Optimization of Electrical Stimulus Pulse Parameter for Low-Power Operation of Retinal Prosthetic Device
- A 128×128 Pixel Complementary Metal Oxide Semiconductor Image Sensor with an Improved Pixel Architecture for Detecting Modulated Light Signals
- A CMOS Image Sensor for in vitro and in vivo Imaging of the Mouse Hippocampus
- A Pulse Modulation CMOS Image Sensor with 120dB Dynamic Range and 1nW/cm^2 Resolution for Bioimaging Applications
- A Flexible and Extendible Neural Stimulation Device with Distributed Multi-chip Architecture for Retinal Prosthesis
- Building a Simple Model of a Pulse-Frequency-Modulation Photosensor and Demonstration of a 128×128-pixel Pulse-Frequency-Modulation Image Sensor Fabricated in a Standard 0.35-μm Complementary Metal-Oxide Semiconductor Technology
- Proposal and Preliminary Experiments of Indoor Optical Wireless LAN Based on a CMOS Image Sensor with a High-Speed Readout Function Enabling a Low-Power Compact Module with Large Uplink Capacity(The IEICE Transactions on Communications, Vol.E86-B, No.5)
- Self-Pulsation of a Nd^-Doped Fluoride Fiber Laser Using Tm^-Doped Fiber as a Saturable Absorber(Joint Special Issue on Recent Progress in Optoelectronics and Communications)
- Self-Pulsation of a Nd^-Doped Fluoride Fiber Laser Using Tm^-Doped Fiber as a Saturable Absorber (IEICE Trans., Electron., Vol. E86-C, No. 5, Joint Special Issue on Recent Progress in Optoelectronics and Communications)
- Position-Controlled Si Nanocrystals in a SiO_2 Thin Film Using a Novel Amorphous Si Ultra-Thin-Film "Nanomask" due to a Bio-Nanoprocess for Low-Energy Ion Implantation
- High-density and very small-size a Ge1-xCx nanocrystal assemblies on a Si(100) substrate fabricated using bionanoprocess with proteins "ferritin" and solid source molecular beam epitaxy (Special issue: Solid state devices and materials)
- MBE-grown Ge_C_x nanocrystals by using a novel bio-nanoprocess due to protein "ferritin"
- The development of a multichannel electrode array for retinal prostheses
- Proposal and Preliminary Experiments of Indoor Optical Wireless LAN Based on a CMOS Image Sensor with a High-Speed Readout Function Enabling a Low-Power Compact Module with Large Uplink Capacity ( Recent Progress in Optoelectronics an
- Irregular Lens Arrangement Design to Improve Imaging Performance of Compound-Eye Imaging Systems
- Proposal of Application of Pulsed Vision Chip for Retinal Prosthesis
- Planar Multielectrode Array Coupled Complementary Metal Oxide Semiconductor Image Sensor for In vitro Electrophysiology
- Polarization Analyzing Image Sensor with On-Chip Metal Wire Grid Polarizer in 65-nm Standard Complementary Metal Oxide Semiconductor Process
- Proposal of Application of Pulsed Vision Chip to Retinal Prosthesis
- Prototype Demonstration of Discrete Correlation Processor-2 Based on High-Speed Optical Image Steering for Large-Fan-Out Reconfigurable Optical Interconnections
- Fabrication of Optical Components and Modules Using Photo-fabrication Technique
- A Low-Voltage Complementary Metal Oxide Semiconductor Image Sensor Using Pulse-Width-Modulation Scheme for Biomedical Applications
- Microfluid Ejection Device Based on Complementary Metal–Oxide–Semiconductor Technology as an Artificial Synapse
- Potentiometric Dye Imaging for Pheochromocytoma and Cortical Neurons with a Novel Measurement System Using an Integrated Complementary Metal–Oxide–Semiconductor Imaging Device
- Development of a Fully Integrated Complementary Metal–Oxide–Semiconductor Image Sensor-Based Device for Real-Time In vivo Fluorescence Imaging inside the Mouse Hippocampus
- Fabrication and Validation of Multichip Neural Stimulator for In vivo Experiments toward Retinal Prosthesis
- Development of Complementary Metal Oxide Semiconductor Imaging Devices for Detecting Green Fluorescent Protein in the Deep Brain of a Freely Moving Mouse
- Complementary Metal--Oxide--Semiconductor Image Sensor with Microchamber Array for Fluorescent Bead Counting
- Implantable Image Sensor with Light Guide Array Plate for Bioimaging
- Multimodal Complementary Metal–Oxide–Semiconductor Sensor Device for Imaging of Fluorescence and Electrical Potential in Deep Brain of Mouse
- A Complementary Metal–Oxide–Semiconductor Image Sensor for On-Chip in Vitro and in Vivo Imaging of the Mouse Hippocampus
- Microchamber Device Equipped with Complementary Metal Oxide Semiconductor Optical Polarization Analyzer Chip for Micro Total Analysis System
- Retinal Stimulation on Rabbit Using Complementary Metal Oxide Semiconductor Based Multichip Flexible Stimulator toward Retinal Prosthesis
- Flexible and Extendible Neural Stimulation Device with Distributed Multichip Architecture for Retinal Prosthesis
- A Study of Bending Effect on Pulse-Frequency-Modulation-Based Photosensor for Retinal Prosthesis
- A New Scheme for Imaging On-Chip Dry DNA Spots using Optical/Potential Dual-Image Complementary Metal Oxide Semiconductor Sensor
- Optimization of Electrical Stimulus Pulse Parameter for Low-Power Operation of Retinal Prosthetic Device