原子吸光分析法による製剤中のキノホルムの定量
スポンサーリンク
概要
- 論文の詳細を見る
Chinoform, being a derivative of oxine, forms metal chelate with various metal ions. It is known that chinoform reacts with zinc to produce a yellow chelate of 2:1 ratio and it is extractable with methyl isobutyl ketone (MIBK). Therefore, if zinc in MIBK layer is measured by atomic absorption spectrophotometry, then chinoform may be determined quantitatively. Chinoform zinc chelate can be extracted easily with chloroform, but MIBK is considered to be more suitable than chloroform as a solvent for atomic absorption spectrophotometry.<BR>In this experiment, a Hitachi 207 Atomic Absorption Spectrophotometer was used, and the 2138 Å analytical line of zinc was used for the measurement using airacetylene flame. The procedure for the determination is described below. Ten m<I>l</I> of 4.1 × 10<SUP>-5</SUP> <I>M</I> chinoform MIBK solution was taken in a 100 m<I>l</I> separatory funnel, and then 10 m<I>l</I> of 2.0× 10<SUP>-4</SUP> <I>M</I> aqueous zinc sulfate solution and 10 m<I>l</I> of sodium borate-boric acid-sodium chloride buffer solution, adjusted at pH 7.9, were added. The mixture was shaken well for 10 minutes and kept standing for 10 minutes. The lower aqueous layer was firstly separated off and secondly MIBK layer was transfered into a test tube. After MIBK layer was filtrated through filter paper, 2 m<I>l</I> of the filtrate was diluted to 10 m<I>l</I> with MIBK, and then the absorbance was measured by atomic absorption spectrophotometry against a reagent blank. From the above investigation, optimum conditions for the extraction have been found.<BR>Most suitable pH range was found to be 7.4 9.0, the concentration of zinc sulfate was 0.5 20 times larger than that of chinoform and the shaking time was more than 10 minutes. The authors examined how the volume ratio (R) between aqueous layer of the metal ion and the buffer, and MIBK layer influences upon the intensity of the absorbance. Consequently, the intensity was found to be higher as R increased. Throughout this measurement, R=2 was used. <BR>Under the optimum conditions mentioned above, a good linearity was obtained between absorbance in organic layer and chinoform content in the range of 6.030.0μg chinoform per m<I>l</I>. When the repeat, ability of this method was examined, the standard deviation was calculated to be 0.495. The composition of the chelate extracted was found to be 2 : 1 ratio according to the continuous variation method.<BR>This method was applied to drug preparations. Chinoform preparation was dissolved in MIBK and insoluble substances in the solution were removed by filtration. MIBK layer was washed with sulfuric acid and then chinoform was extracted as a zinc chelate. Zinc in MIBK layer was measured by atomic absorption spectrophotometry, and this preparation was determined to contain 18.2% chinoform. Recovery was found to be 98.5%, according to the standard addition method.
- 社団法人 日本分析化学会の論文
著者
関連論文
- Quinoxaline およびQuinoxaline N-Oxide誘導体のポーラログラフ的検討(第1報)
- Indoloquinoxaline誘導体の金属錯体に関する研究(第3報) : 1-および4-Hydroxyindoloquinoxalineの金属錯体
- Indoloquinoxaline誘導体の金属錯体に関する研究(第2報 ) : Hydroxyindoloquinoxaline金属錯体の分光光度法による安定度定数の測定
- Indoloquinoxaline誘導体の金属錯体に関する研究(第1報) : Hydroxyindoloquinoxaline誘導体の合成
- アミノ安息香酸の金属錯体の研究
- Phenazine誘導体の金属キレートの研究(第7報)1-Phenazine-methiolの金属錯体について
- Phenazine誘導体の金属キレートの研究(第6報)1-Phenazinemethanolの金属錯体について
- ルモガリオンによるスルピリンの吸光光度定量
- o-およびp-Aminobenzenesulfonamideの金属錯体の研究
- ニコチン酸およびイソニコチン酸の金属錯体の研究
- Phenazine誘導体の金属キレートの研究(第8報)1-Hydroxyphenazineの金属錯体
- 5-(2,6-ジメチル-4-ピラニリデン)-ローダニンによる銀の分光光度定量法 : ローダニン誘導体の分析化学的研究(第2報)
- ローダニン誘導体と銀との反応 : ローダニン誘導体の分析化学的研究(第1報)
- フェノチアジンの塩化第二鉄による吸光光度定量
- 金属指示薬NNによるジフェニルピラリンの吸光光度定量 : 抗ヒスタミン剤の定量法に関する研究 (第2報)
- Plasmocorinth Bによるジフェンヒドラミンの吸光光度定量 : 抗ヒスタミン剤の定量法に関する研究 (第1報)
- Plasmocorinth Bによるクロルフェニラミンの吸光光度定量 : 抗ヒスタミン剤の定量法に関する研究(第3報)
- 原子吸光分析法によるマレイン酸クロルフェニラミンの間接定量 : 原子吸光分析法による微量医薬品の定量(第4報)
- 原子吸光分析法によるカテコールの間接定量
- シアノコバラミン製剤の原子吸光分析法による定量条件の検討
- 2-アミノ-3-キノキサリンチオール誘導体によるニッケルおよびコバルトの吸光光度定量
- 原子吸光分析法によるイソニコチン酸ヒドラジドの定量
- フェナチン誘導体および1-ヒドロキシフェナチン金属キレートの薄層クロマトグラフィー
- 原子吸光分析法による有機化合物中のリンの間接定量(ノート)
- 原子吸光分析法による金属錯体中の銅,ニッケル,コバルトおよび亜鉛の定量(ノート)
- 原子吸光分析法による製剤中のキノホルムの定量
- 原子吸光分析法による有機化合物中のハロゲン元素の定量分析
- 原子吸光分析法によるハロゲン含有試料の定量法 ハロゲン含有医薬品の定量