An EntD-like phosphopantetheinyl transferase gene from Photobacterium profundum SS9 complements pfa genes of Moritella marina strain MP-1 involved in biosynthesis of docosahexaenoic acid
スポンサーリンク
概要
- 論文の詳細を見る
The EntD-like phosphopantetheinyl transferase (PPTase) gene, cloned from the eicosapentaenoic acid-producing bacterium Photobacterium profundum strain SS9, has an open reading frame of 690 bp encoding a 230-amino acid protein. When this PPTase gene was expressed in Escherichia coli with pfaA, pfaB, pfaC and pfaD derived from Moritella marina MP-1, which were four of five essential genes for biosynthesis of docosahexaenoic acid (DHA), the DHA production of the recombinant was 2.0% (w/w) of total fatty acids. This is the first report showing that the EntD-like PPTase is involved in producing n-3 polyunsaturated fatty acids.
- Springer Netherlandsの論文
著者
-
Okuyama Hidetoshi
Lab. Of Environmental Molecular Biology Graduate School Of Environmental Earth Sci. Hokkaido Univ. S
-
Okuyama H
Hokkaido Univ. Sapporo Jpn
-
Orikasa Yoshitake
Department Of Food Science Obihiro University Of Agriculture And Veterinary Medicine
関連論文
- Possible Biosynthetic Pathways for all cis-3,6,9,12,15,19,22,25,28-Hentriacontanonaene in Bacteria
- Enhancement of the nitrogen fixation efficiency of genetically-engineered Rhizobium with high catalase activity(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- pfaB products determine the molecular species produced in bacterial polyunsaturated fatty acid biosynthesis
- H_2O_2 Tolerance of Vibrio rumoiensis S-1^T is Attributable to the Cellular Catalase Activity(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- H_2O_2 Tolerance of Vibrio rumoiensis S-1^T is Attributable to the Cellular Catalase Activity
- Enhanced heterologous production of eicosapentaenoic acid in Escherichia coli cells that co-express eicosapentaenoic acid biosynthesis pfa genes and foreign DNA fragments including a high-performance catalase gene, vktA.
- Characterization of the Gene Encoding the β-Lactamase of the Psychrophilic Marine Bacterium Moritella marina Strain MP-1
- Gene Cloning and Expression of the Catalase from the Hydrogen Peroxide-Resistant Bacterium Vibrio rumoiensis S-1 and Its Subcellular Localization
- GENE CLONING OF THE FATTY ACID SYNTHASE FROM THE DHA PRODUCING PSYCHROPHILIC BACTERIUM, Vibrio marinus strain MP-1
- Isolation of Vibrio sp.S-1 Exhibiting Extraordinarily High Catalase Activity
- Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation
- Degradation of long-chain n-alkanes (C36 and C40) by Pseudomonas aeruginosa strain WatG
- Verification of Degradation of n-Alkanes in Diesel Oil by Pseudomonas aeruginosa Strain WatG in Soil Microcosms
- Extremely psychrophilic microalgae isolated from the Antarctic ocean
- The antioxidative function of eicosapentaenoic acid in a marine bacterium, Shewanella marinintestina IK-1
- Bacterial Genes Responsible for the Biosynthesis of Eicosapentaenoic and Docosahexaenoic Acids and Their Heterologous Expression
- Recombinant production of docosahexaenoic acid in a polyketide biosynthesis mode in Escherichia coli.
- A phosphopantetheinyl transferase gene essential for biosynthesis of n-3 polyunsaturated fatty acids from Moritella marina strain MP-1
- An EntD-like phosphopantetheinyl transferase gene from Photobacterium profundum SS9 complements pfa genes of Moritella marina strain MP-1 involved in biosynthesis of docosahexaenoic acid
- GPI-ANCHORED PROTEINS OF PLANT CELLS
- DISTRIBUTION AND ACCUMULATION OF PHOSPHATASE AND PLASMA MEMBRANE PROTON-ATPase INDUCIBLY SYNTHESIZED IN Spirodela oligorrhiza GROWN UNDER PHOSPHATE-DEFICIENT CONDITIONS
- Significance of Antioxidative Function of Eicosapentaenoic and Docosahexaenoic Acids in Marine Microorganisms
- In vivo conversion of triacylglycerol to docosahexaenoic acid-containing phospholipids in a thraustochytrid-like microorganism, strain 12B
- The cell membrane-shielding function of eicosapentaenoic acid for Escherichia coli against exogenously added hydrogen peroxide.
- Escherichia coli engineered to produce eicosapentaenoic acid becomes resistant against oxidative damages
- Isolation and Characterization of a Novel Thraustochytrid-like Microorganism that Efficiently Produces Docosahexaenoic Acid
- The Escherichia coli highly expressed entD gene complements the pfaE deficiency in a pfa gene clone responsible for the biosynthesis of long-chain n-3 polyunsaturated fatty acids
- Membrane eicosapentaenoic acid is involved in the hydrophobicity of bacterial cells and affects the entry of hydrophilic and hydrophobic compounds
- Baking Properties of Saccharomyces cerevisiae Strains Derived from Brem, a Traditional Rice Wine from Bali
- Efficient Production of Ethanol from Saccharified Crops Mixed with Cheese Whey by the Flex Yeast Kluyveromyces marxianus KD-15