Membrane eicosapentaenoic acid is involved in the hydrophobicity of bacterial cells and affects the entry of hydrophilic and hydrophobic compounds
スポンサーリンク
概要
- 論文の詳細を見る
Eicosapentaenoic acid (EPA)-producing Shewanella marinintestina IK-1 (IK-1) and its EPA-deficient mutant IK-1Δ8 (IK-1Δ8) were grown on microtitre plates at 20 °C in a nutrient medium that contained various types of growth inhibitors. The minimal inhibitory concentrations of hydrogen peroxide and tert-butyl hydroxyl peroxide were 100 μM and 1 mM, respectively, for IK-1 and 10 and 100 μM, respectively, for IK-1Δ8. IK-1 was much more resistant than IK-1Δ8 to the four water-soluble antibiotics (ampicillin sodium, kanamycin sulphate, streptomycin sulphate, and tetracycline hydrochloride) tested. In contrast, IK-1 was less resistant than IK-1Δ8 to two hydrophobic uncouplers: carbonyl cyanide m-chloro phenylhydrazone (CCCP) and N,N′-dicyclohexylcarbodiimide (DCCD). The hydrophobicity of the IK-1 and IK-1Δ8 cells grown at 20 °C was determined using the bacterial adhesion to hydrocarbon method. EPA-containing (∼10% of total fatty acids) IK-1 cells were more hydrophobic than their counterparts with no EPA. These results suggest that the high hydrophobicity of IK-1 cells can be attributed to the presence of membrane EPA, which shields the entry of hydrophilic membrane-diffusible compounds, and that hydrophobic compounds such as CCCP and DCCD diffuse more effectively in the membranes of IK-1, where they can fulfil their inhibitory activities, than in the membranes of IK-1Δ8.
- Blackwell Publishingの論文
著者
-
Morishita Nozomu
Res. Inst. Of Genome-based Biofactory National Inst. Of Advanced Industrial Sci. And Technol. (aist)
-
Okuyama Hidetoshi
Hokkaido Univ. Sapporo Jpn
-
Morita Naoki
National Institute of Advanced Industrial Science and Technology (AIST)
-
Okuyama Hidetoshi
Lab. Of Environmental Molecular Biology Graduate School Of Environmental Earth Sci. Hokkaido Univ. S
-
Okuyama H
Hokkaido Univ. Sapporo Jpn
-
Morishita Nozomu
Research Institute Of Genome-based Biofactory National Institute Of Advanced Industrial Science And
関連論文
- Possible Biosynthetic Pathways for all cis-3,6,9,12,15,19,22,25,28-Hentriacontanonaene in Bacteria
- A novel membrane-anchored cytochrome c-550 of alkaliphilic Bacillus clarkii K24-1U: expression, molecular features and properties of redox potential
- Enhancement of the nitrogen fixation efficiency of genetically-engineered Rhizobium with high catalase activity(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- pfaB products determine the molecular species produced in bacterial polyunsaturated fatty acid biosynthesis
- H_2O_2 Tolerance of Vibrio rumoiensis S-1^T is Attributable to the Cellular Catalase Activity(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- H_2O_2 Tolerance of Vibrio rumoiensis S-1^T is Attributable to the Cellular Catalase Activity
- Enhanced heterologous production of eicosapentaenoic acid in Escherichia coli cells that co-express eicosapentaenoic acid biosynthesis pfa genes and foreign DNA fragments including a high-performance catalase gene, vktA.
- Hypovirulent strain of the violet root rot fungus Helicobasidium mompa (FUNGAL DISEASES)
- Characterization of the Gene Encoding the β-Lactamase of the Psychrophilic Marine Bacterium Moritella marina Strain MP-1
- Gene Cloning and Expression of the Catalase from the Hydrogen Peroxide-Resistant Bacterium Vibrio rumoiensis S-1 and Its Subcellular Localization
- GENE CLONING OF THE FATTY ACID SYNTHASE FROM THE DHA PRODUCING PSYCHROPHILIC BACTERIUM, Vibrio marinus strain MP-1
- FREEZING RESISTANCE AMONG ISOLATES OF A PSYCHROPHILIC FUNGUS, TYPHULA ISHIKARIENSIS, FROM NORWAY (19th Symposium on Polar Biology)
- Isolation of Vibrio sp.S-1 Exhibiting Extraordinarily High Catalase Activity
- Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation
- Cytochrome c-552 from Gram-Negative Alkaliphilic Pseudomonas alcaliphila AL15-21T Alters the Redox Properties at High pH
- Degradation of long-chain n-alkanes (C36 and C40) by Pseudomonas aeruginosa strain WatG
- Verification of Degradation of n-Alkanes in Diesel Oil by Pseudomonas aeruginosa Strain WatG in Soil Microcosms
- Extremely psychrophilic microalgae isolated from the Antarctic ocean
- The antioxidative function of eicosapentaenoic acid in a marine bacterium, Shewanella marinintestina IK-1
- Bacterial Genes Responsible for the Biosynthesis of Eicosapentaenoic and Docosahexaenoic Acids and Their Heterologous Expression
- Recombinant production of docosahexaenoic acid in a polyketide biosynthesis mode in Escherichia coli.
- A phosphopantetheinyl transferase gene essential for biosynthesis of n-3 polyunsaturated fatty acids from Moritella marina strain MP-1
- An EntD-like phosphopantetheinyl transferase gene from Photobacterium profundum SS9 complements pfa genes of Moritella marina strain MP-1 involved in biosynthesis of docosahexaenoic acid
- GPI-ANCHORED PROTEINS OF PLANT CELLS
- DISTRIBUTION AND ACCUMULATION OF PHOSPHATASE AND PLASMA MEMBRANE PROTON-ATPase INDUCIBLY SYNTHESIZED IN Spirodela oligorrhiza GROWN UNDER PHOSPHATE-DEFICIENT CONDITIONS
- Significance of Antioxidative Function of Eicosapentaenoic and Docosahexaenoic Acids in Marine Microorganisms
- In vivo conversion of triacylglycerol to docosahexaenoic acid-containing phospholipids in a thraustochytrid-like microorganism, strain 12B
- The cell membrane-shielding function of eicosapentaenoic acid for Escherichia coli against exogenously added hydrogen peroxide.
- Escherichia coli engineered to produce eicosapentaenoic acid becomes resistant against oxidative damages
- Isolation and Characterization of a Novel Thraustochytrid-like Microorganism that Efficiently Produces Docosahexaenoic Acid
- The Escherichia coli highly expressed entD gene complements the pfaE deficiency in a pfa gene clone responsible for the biosynthesis of long-chain n-3 polyunsaturated fatty acids
- Membrane eicosapentaenoic acid is involved in the hydrophobicity of bacterial cells and affects the entry of hydrophilic and hydrophobic compounds