In vivo conversion of triacylglycerol to docosahexaenoic acid-containing phospholipids in a thraustochytrid-like microorganism, strain 12B
スポンサーリンク
概要
- 論文の詳細を見る
The thraustochytrid-like microorganism, strain 12B, cultivated in peptone, yeast extract, and 8% (w/v) glucose in 50% (v/v) seawater, accumulated docosahexaenoic acid (DHA)-rich triacylglycerol (TAG) at 67% of total lipid. When these TAG-accumulated cells were cultivated in glucose-deficient medium, dry cell weight (3 mg per ml culture) increased approximately 3-fold relative to baseline but the TAG/total lipid decreased to 5%. At the same time, the amount of phospholipid (5 mg) per whole culture also increased 3-fold. Hence, phospholipid/total lipid increased from 13% to 67%. High levels of DHA (more than 50% of total) were maintained in phosphatidylcholine.
- Springer Netherlandsの論文
著者
-
Okuyama Hidetoshi
Hokkaido Univ. Sapporo Jpn
-
Okuyama Hidetoshi
Laboratory Of Environmental Molecular Biology Graduate School Of Environmental Earth Science Hokkaid
-
Okuyama Hidetoshi
Lab. Of Environmental Molecular Biology Graduate School Of Environmental Earth Sci. Hokkaido Univ. S
-
Okuyama H
Hokkaido Univ. Sapporo Jpn
-
Orikasa Yoshitake
Department Of Food Science Obihiro University Of Agriculture And Veterinary Medicine
関連論文
- Possible Biosynthetic Pathways for all cis-3,6,9,12,15,19,22,25,28-Hentriacontanonaene in Bacteria
- Enhancement of the nitrogen fixation efficiency of genetically-engineered Rhizobium with high catalase activity(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- pfaB products determine the molecular species produced in bacterial polyunsaturated fatty acid biosynthesis
- H_2O_2 Tolerance of Vibrio rumoiensis S-1^T is Attributable to the Cellular Catalase Activity(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- H_2O_2 Tolerance of Vibrio rumoiensis S-1^T is Attributable to the Cellular Catalase Activity
- Enhanced heterologous production of eicosapentaenoic acid in Escherichia coli cells that co-express eicosapentaenoic acid biosynthesis pfa genes and foreign DNA fragments including a high-performance catalase gene, vktA.
- Characterization of the Gene Encoding the β-Lactamase of the Psychrophilic Marine Bacterium Moritella marina Strain MP-1
- Gene Cloning and Expression of the Catalase from the Hydrogen Peroxide-Resistant Bacterium Vibrio rumoiensis S-1 and Its Subcellular Localization
- GENE CLONING OF THE FATTY ACID SYNTHASE FROM THE DHA PRODUCING PSYCHROPHILIC BACTERIUM, Vibrio marinus strain MP-1
- Isolation of Vibrio sp.S-1 Exhibiting Extraordinarily High Catalase Activity
- Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation
- Degradation of long-chain n-alkanes (C36 and C40) by Pseudomonas aeruginosa strain WatG
- Verification of Degradation of n-Alkanes in Diesel Oil by Pseudomonas aeruginosa Strain WatG in Soil Microcosms
- Extremely psychrophilic microalgae isolated from the Antarctic ocean
- The antioxidative function of eicosapentaenoic acid in a marine bacterium, Shewanella marinintestina IK-1
- Bacterial Genes Responsible for the Biosynthesis of Eicosapentaenoic and Docosahexaenoic Acids and Their Heterologous Expression
- Recombinant production of docosahexaenoic acid in a polyketide biosynthesis mode in Escherichia coli.
- A phosphopantetheinyl transferase gene essential for biosynthesis of n-3 polyunsaturated fatty acids from Moritella marina strain MP-1
- An EntD-like phosphopantetheinyl transferase gene from Photobacterium profundum SS9 complements pfa genes of Moritella marina strain MP-1 involved in biosynthesis of docosahexaenoic acid
- GPI-ANCHORED PROTEINS OF PLANT CELLS
- IDENTIFICATION AND CHARACTERIZATION OF A 9-CIS-HEXADECENOIC ACID CIS-TRANS ISOMERASE FROM A PSYCHROTROPHIC BACTERIUM, PSEUDOMONAS SP. STRAIN E-3 (18th Symposium on Polar Biology)
- DISTRIBUTION AND ACCUMULATION OF PHOSPHATASE AND PLASMA MEMBRANE PROTON-ATPase INDUCIBLY SYNTHESIZED IN Spirodela oligorrhiza GROWN UNDER PHOSPHATE-DEFICIENT CONDITIONS
- Significance of Antioxidative Function of Eicosapentaenoic and Docosahexaenoic Acids in Marine Microorganisms
- In vivo conversion of triacylglycerol to docosahexaenoic acid-containing phospholipids in a thraustochytrid-like microorganism, strain 12B
- The cell membrane-shielding function of eicosapentaenoic acid for Escherichia coli against exogenously added hydrogen peroxide.
- Escherichia coli engineered to produce eicosapentaenoic acid becomes resistant against oxidative damages
- Isolation and Characterization of a Novel Thraustochytrid-like Microorganism that Efficiently Produces Docosahexaenoic Acid
- The Escherichia coli highly expressed entD gene complements the pfaE deficiency in a pfa gene clone responsible for the biosynthesis of long-chain n-3 polyunsaturated fatty acids
- Membrane eicosapentaenoic acid is involved in the hydrophobicity of bacterial cells and affects the entry of hydrophilic and hydrophobic compounds
- Baking Properties of Saccharomyces cerevisiae Strains Derived from Brem, a Traditional Rice Wine from Bali
- Efficient Production of Ethanol from Saccharified Crops Mixed with Cheese Whey by the Flex Yeast Kluyveromyces marxianus KD-15