Acoustic Emission Characteristics of Nanocrystalline Porous Silicon Device Driven as an Ultrasonic Speaker
スポンサーリンク
概要
- 論文の詳細を見る
It is shown that the dc-superimposed driving mode is more useful for the efficient operation of a novel thermally induced ultrasonic emitter based on nanocrystalline porous silicon (nc-PS) than the conventional simple ac-voltage driving mode. The nc-PS device is composed of a patterned heater electrode, an nc-PS layer and a single crystalline silicon (c-Si) substrate. The almost complete thermally insulating property of nc-PS as a quantum-sized system makes it possible to apply the nc-PS device as an ultrasonic generator by efficient thermo acoustic conversion without any mechanical vibrations. In the dc-superimposed driving mode, the output frequency is the same as the input frequency and a stationary temperature rise is kept constant independent of input peak-to-peak voltage. In addition, power efficiency is significantly increases compared with that in the ac-voltage driving mode without affecting on the temperature rise. The present results suggest the further possibility of the nc-PS device being used as a functional speaker.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2006-04-30
著者
-
Komoda Takuya
Advanced Technologies Development Laboratory Matsushita Electric Works Ltd.
-
Tsubaki Kenji
Advanced Technologies Development Laboratory Matsushita Electric Works Ltd.
-
Koshida Nobuyoshi
Graduate School Of Eng. Tokyo Univ. Of A&t
-
Tsubaki Kenji
Advanced Technologies Development Laboratory, Matsushita Electric Works, Ltd., Kadoma, Osaka 571-8686, Japan
-
Komoda Takuya
Advanced Technologies Development Laboratory, Matsushita Electric Works, Ltd., Kadoma, Osaka 571-8686, Japan
関連論文
- Functional devices based on quantum-sized nanosilicon (Electron devices: 第15回先端半導体デバイスの基礎と応用に関するアジア・太平洋ワークショップ(AWAD2007))
- Functional devices based on quantum-sized nanosilicon (Silicon devices and materials: 第15回先端半導体デバイスの基礎と応用に関するアジア・太平洋ワークショップ(AWAD2007))
- Novel Device Applications of Quantum-Sized Nanocrystalline Silicon
- Multilayered thin metal film deposition by sequential operation of nanosilicon electron emitter in metal-salt solutions (Special issue: Microprocesses and nanotechnology)
- Electroluminescence Enhancement Assisted with Ballistic Electron Excitation in Nanocrystalline Silicon Diodes
- Electroluminescence Enhancement Assisted with Ballistic Electron Excitation in Nanocrystalline Silicon Diodes
- Formation Mechanism of 100-nm-Scale Periodic Structures in Silicon Using Magnetic-Field-Assisted Anodization
- High Efficient OLEDs and Their Application to Lighting
- Counter-Electrode-Free Thin Cu Film Deposition Based on Ballistic Electron Injection into CuSO4 Solution from Nanosilicon Emitter
- Highly enhanced efficiency and stability of Photo- and Electro-Luminescence of Nano-Crystalline Porous Silicon by High-Pressure Water Vapor Annealing
- Highly Efficient and Stable Photoluminescence of Nanocrystalline Porous Silicon with Fully Annealed and Passivated Surfaces
- Acoustic Wave Manipulation by Phased Operation of Two-Dimensionally Arrayed Nanocrystalline Silicon Ultrasonic Emitters
- Cavity Effect in Nanocrystalline Porous Silicon Ballistic Lighting Device
- Acoustic Emission Characteristics of Nanocrystalline Porous Silicon Device Driven as an Ultrasonic Speaker
- Development of Flexible Electrochromic Device with Thin Film Configuration
- New Operation Mode of Nanocrystalline Silicon Ultrasonic Emitter for the Use as an Audio Speaker
- Functions and Device Applications of Quantum-sized Silicon
- Structural and Luminescence Properties of Highly Crystalline ZnO Nanoparticles Prepared by Sol--Gel Method
- Strain Effects on Avalanche Multiplication in a Silicon Nanodot Array (Special Issue : Solid State Devices and Materials (2))
- Specific Blue Light Emission from Nanocrystalline Porous Si Treated by High-Pressure Water Vapor Annealing
- Highly Enhanced Efficiency and Stability of Photo- and Electro-luminescence of Nano-crystalline Porous Silicon by High-Pressure Water Vapor Annealing
- Acoustic Wave Manipulation by Phased Operation of Two-Dimensionally Arrayed Nanocrystalline Silicon Ultrasonic Emitters
- Three-Dimensional Image Sensing in Air by Thermally Induced Ultrasonic Emitter Based on Nanocrystalline Porous Silicon
- New Design Concept and Fabrication Process for Three-Dimensional Silicon Photonic Crystal Structures
- Acoustic Emission Characteristics of Nanocrystalline Porous Silicon Device Driven as an Ultrasonic Speaker
- New Operating Mode of Nanocrystalline Silicon Ultrasonic Emitters for Use as Audio Speakers
- Highly Efficient and Stable Photoluminescence of Nanocrystalline Porous Silicon by Combination of Chemical Modification and Oxidation under High Pressure
- Cavity Effect in Nanocrystalline Porous Silicon Ballistic Lighting Device
- Disorder-Induced Enhancement of Avalanche Multiplication in a Silicon Nanodot Array