Downcomer effective water head during reflood in postulated PWR LOCA.
スポンサーリンク
概要
- 論文の詳細を見る
A study was conducted of the downcomer effective water head which is the only driving force to supply emergency core coolant into core during reflood phase in a PWR loss-of-coolant accident.<BR>With a full height downcomer simulator, effective water head experiments were carried out under 1 atm to investigate the applicability of the correlation for void fraction for evaluating the effective water head as well as to investigate the effect of the scale factor.<BR>As the results, the effect of the scale factor (the gap of the downcomer) was revealed to be significant, that is, the smaller gap gives the smaller effective water head. From the comparison of predictions based on the correlation for void fraction with the experimental results, it was revealed that (1) for a slow effective water head change expected in the reflood phase, the used correlation gives a good prediction for the experi-mental results and that (2) for a rapid change of effective water head, however, more elaborate investigation is needed. It was revealed that for a rapid change of effective water head, the change of the saturation temperature due to the pressure change with time should be taken into account for evaluating the steam generation which is a key variable in the correlation.
- 一般社団法人 日本原子力学会の論文
著者
-
Akimoto Hajime
Japan Atomic Energy Agency
-
Sudo Yukio
Japan Atomic Energy Research Institute
-
Akimoto Hajime
Japan Atomic Energy Research Institute
関連論文
- Effect of Rod Bowing on Critical Power Based on Tight-Lattice 37-Rod Bundle Experiments
- Gap Width Effect on Critical Power based on Tight-Lattice 37-Rod Bundle Experiments
- Pressure Drop Experiments using Tight-Lattice 37-Rod Bundles
- Critical Power Experiment with a Tight-Lattice 37-Rod Bundle
- Critical Power Characteristics in 37-rod Tight Lattice Bundles under Transient Conditions
- An Improved Critical Power Correlation for Tight-Lattice Rod Bundles
- Critical Power Correlation for Tight-Lattice Rod Bundles
- Critical Power in 7-Rod Tight Lattice Bundle(International Conferences on Power and Energy System)
- ICONE11-36099 CRITICAL POWER CHARACTERISTICS OF TIGHT LATTICE BUNDLES
- Applicability of REFLA/TRAC Code to a Small-Break LOCA of PWR
- Pressure Drop Characteristics in Tight-Lattice Bundles for Reduced-Moderation Water Reactors(International Conferences on Power and Energy System)
- ICONE11-36172 EVALUATION OF CRITICAL HEAT FLUX OF TIGHT LATTICE CORE WITH SUBCHANNEL ANALYSIS CODE NASCA
- ICONE11-36098 PRESSURE DROP CHARACTERISTICS IN TIGHT-LATTICE ROD BUNDLES FOR REDUCED-MODERATION WATER REACTERS
- PREDICTED THREE-DIMENSIONAL BUBBLY AND LIQUID FILM FLOW BEHAVIOR IN NARROW FUEL CHANNELS(Liquid Flow)
- ICONE11-36097 DEVELOPMENT OF MECHANISTIC BOILING TRANSITION MODEL IN ROD BUNDLES
- Experimental Study of Falling Water Limitation under a Counter-Current Flow in a Vertical Rectangular Channel : 1st Report, Effect of Flow Channel Configuration and Introduction of CCFL Correlation
- Heat Transfer Characteristics in Narrow Vertical Rectangular Channels Heated from Both Sides
- FLOW VISUALIZATION OF A WAKE STRUCTURE AROUND THIN PLATE BY USING DYNAMIC PIV SYSTEM(Measurement)
- Model Development for Bubble Turbulent Diffusion and Bubble Diameter in Large Vertical Pipes
- Numerical Investigation of Heat Transfer Enhancement Phenomenon during the Reflood Phase of PWR-LOCA
- Improvement of Critical Heat Flux Correlation for Research Reactors using Plate-Type Fuel
- Mechanism of Falling Water Limitation under Counter-current Flow through a Vertical Flow Path
- Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: III - Numerical Evaluation of Fluid Mixing Phenomena using Advanced Interface-Tracking Method -
- Experimental Study of Homogeneously Dispersed Two-phase Critical Flow
- Development of Design Technology on Thermal-hydraulic Performance in Tight-lattice Rod Bundles: V-Estimation of Void Fraction
- Core thermohydraulic design with 20% LEU fuel for upgraded research reactor JRR-3.
- Experimental study of incipient nucleate boiling in narrow vertical rectangular channel simulating subchannel of upgraded JRR-3.
- Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundle: IV Large Paralleled Simulation by the Advanced Two-fluid Model Code
- Numerical Investigation of Cross Flow Phenomena in a Tight-Lattice Rod Bundle Using Advanced Interface Tracking Method
- Analytical study on thermal-hydraulic behavior of transient from forced circulation to natural circulation in JRR-3.
- Experimental study of differences in DNB heat flux between upflow and downflow in vertical rectangular channel.
- Heat Transfer Calculation of Simulated Heater Rods throughout Reflood Phase in Postulated PWR-LOCA Experiments
- Estimation of average void fraction in vertical two-phase flow channel under low liquid velocity.
- Evaluation of Local Power Distribution with Fine-mesh Core Model for High Temperature Engineering Test Reactor (HTTR).
- Effects of partial flow blockage on core heat transfer in forced-feed reflood tests.
- Upper plenum dump during reflood in PWR loss-of-coolant accident.
- Prediction of Dryout Heat Flux for Particle Bed Simulating Degraded Core in LWR Severe Core Damage Accidents
- Combined forced and free convective heat transfer characteristics in narrow vertical rectangular channel heated from both sides.
- Downcomer effective water head during reflood in postulated PWR LOCA.
- Experimental study of differences in single-phase forced-convection heat transfer characteristics between upflow and downflow for narrow rectangular channel.
- Experimental study of upper core quench in PWR reflood phase.
- Assessment of current safety evaluation analysis on reflood behavior during PWR-LOCA by using CCTF data.
- Experimental study of system behavior during reflood phase of PWR-LOCA using CCTF.
- Parameter effects on downcomer penetration of ECC water in PWR-LOCA.
- Analysis of saturated film boiling heat transfer in reflood phase of PWR-LOCA. Turbulent boundary layer model.:Turbulent Boundary Layer Model
- Oscillatory flows induced by direct contact condensation of flowing steam with injectes water.
- Core radial power profile effect on system and core cooling behavior during reflood phase of PWR-LOCA with CCTF data.
- System pressure effect on system and core cooling behavior during reflood phase of PWR LOCA.
- Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: I-Master Plan and Executive Summary
- Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: II - Rod Bowing Effect on Boiling Transition under Transient Conditions
- Assessment of core radial power profile effect model for REFLA code by using CCTF data.
- Pressure drop through broken cold leg during reflood phase of loss-of-coolant accident of pressurized water reactor.
- Applicability of Core Thermal-Hydraulic Models in REFLA Code to 17*17 Type Fuel Assembly of PWR.
- Film boiling heat transfer during reflood phase in postulated PWR loss-of-coolant accident.
- Elimination of Numerical Pressure Spikes Induced by Two-Fluid Model.