Upper plenum dump during reflood in PWR loss-of-coolant accident.
スポンサーリンク
概要
- 論文の詳細を見る
Upper plenum dump during reflood in a large break loss-of-coolant accident of PWR is studied with the emergency core coolant injection into the upper plenum in addition to the cold leg. Transient experiments were carried out by injecting water into the upper plenum and the simple analysis based on a one-dimensional model was done using the drift flux model in order to investigate the conditions under which water dump through the core occurs during reflood.<BR>The most significant result is an upper plenum dump occurs when the pressure (hydrostatic head) in the upper plenum is greater than that in the lower plenum. Under those circumstances the flow regime isco-current down flow in which the upper plenum is rapidly emptied. On the other hand, when the upper plenum pressure (hydrostatic head) is less than the lower plenum pressure (hydrostatic head), the co-current down flow is not realized but a counter-current flow occurs. With subcooled water injection to the upper plenum, co-current down flow is realized even when the upper plenum hydrostatic head is less than the lower plenum hydrostatic head. The importance of this effect varies according to the magnitude of water subcooling.
- 一般社団法人 日本原子力学会の論文
著者
-
Sudo Yukio
Japan Atomic Energy Research Institute
-
GRIFFITH Peter
Massachusetts Institute of Technology
関連論文
- Experimental Study of Falling Water Limitation under a Counter-Current Flow in a Vertical Rectangular Channel : 1st Report, Effect of Flow Channel Configuration and Introduction of CCFL Correlation
- Heat Transfer Characteristics in Narrow Vertical Rectangular Channels Heated from Both Sides
- Improvement of Critical Heat Flux Correlation for Research Reactors using Plate-Type Fuel
- Mechanism of Falling Water Limitation under Counter-current Flow through a Vertical Flow Path
- Experimental Study of Homogeneously Dispersed Two-phase Critical Flow
- Core thermohydraulic design with 20% LEU fuel for upgraded research reactor JRR-3.
- Experimental study of incipient nucleate boiling in narrow vertical rectangular channel simulating subchannel of upgraded JRR-3.
- Analytical study on thermal-hydraulic behavior of transient from forced circulation to natural circulation in JRR-3.
- Experimental study of differences in DNB heat flux between upflow and downflow in vertical rectangular channel.
- Heat Transfer Calculation of Simulated Heater Rods throughout Reflood Phase in Postulated PWR-LOCA Experiments
- Estimation of average void fraction in vertical two-phase flow channel under low liquid velocity.
- Evaluation of Local Power Distribution with Fine-mesh Core Model for High Temperature Engineering Test Reactor (HTTR).
- Effects of partial flow blockage on core heat transfer in forced-feed reflood tests.
- Upper plenum dump during reflood in PWR loss-of-coolant accident.
- Prediction of Dryout Heat Flux for Particle Bed Simulating Degraded Core in LWR Severe Core Damage Accidents
- Combined forced and free convective heat transfer characteristics in narrow vertical rectangular channel heated from both sides.
- Downcomer effective water head during reflood in postulated PWR LOCA.
- Experimental study of differences in single-phase forced-convection heat transfer characteristics between upflow and downflow for narrow rectangular channel.
- Experimental study of upper core quench in PWR reflood phase.
- Parameter effects on downcomer penetration of ECC water in PWR-LOCA.
- Analysis of saturated film boiling heat transfer in reflood phase of PWR-LOCA. Turbulent boundary layer model.:Turbulent Boundary Layer Model
- Film boiling heat transfer during reflood phase in postulated PWR loss-of-coolant accident.