Core thermohydraulic design with 20% LEU fuel for upgraded research reactor JRR-3.
スポンサーリンク
概要
- 論文の詳細を見る
This paper presents the outline of the core thermohydraulic design and analysis of the research reactor JRR-3, which is to be upgraded to a 20 MWt pool-type, light water-cooled reactor with 20% low enriched uranium (LEU) plate-type fuel. For the condition of normal operation, the upgraded JRR-3 core is planned to be cooled by two cooling modes of forced-convection at high power and natural-convection at low power. The major feature of core thermohydraulics is that at the forced-convection cooling mode the core flow is a downflow, under which fuel plates are exposed to a severer condition than an upflow in cases of operational transients and accidents. The core thermohydraulic design was, therefore, done for the condition of normal operation so that fuel plates may have enough safety margins both against the onset of nucleate boiling (ONB) not to allow the nucleate boiling anywhere in the core and against the departure from nucleate boiling (DNB). The safety margins against ONB and DNB were evaluated. The core velocity thus designed is at the optimum condition where fuel plates have the maximum margin against the ONB, and the minimum DNB ratio (ratio of DNB heat flux to the maximum heat flux) was evaluated to be about 2.1, which gives a sufficient margin against the DNB. The core thermohydraulic characteristics were also clarified for the natural-convection cooling mode.
- 一般社団法人 日本原子力学会の論文
著者
-
Sudo Yukio
Japan Atomic Energy Research Institute
-
IKAWA Hiromasa
Japan Atomic Energy Research Institute
-
ANDO Hiroei
Japan Atomic Energy Research Institute
-
OHNISHI Nobuaki
Japan Atomic Energy Research Institute
関連論文
- Experimental Study of Falling Water Limitation under a Counter-Current Flow in a Vertical Rectangular Channel : 1st Report, Effect of Flow Channel Configuration and Introduction of CCFL Correlation
- Heat Transfer Characteristics in Narrow Vertical Rectangular Channels Heated from Both Sides
- Improvement of Critical Heat Flux Correlation for Research Reactors using Plate-Type Fuel
- Mechanism of Falling Water Limitation under Counter-current Flow through a Vertical Flow Path
- Experimental Study of Homogeneously Dispersed Two-phase Critical Flow
- Core thermohydraulic design with 20% LEU fuel for upgraded research reactor JRR-3.
- Experimental study of incipient nucleate boiling in narrow vertical rectangular channel simulating subchannel of upgraded JRR-3.
- Analytical study on thermal-hydraulic behavior of transient from forced circulation to natural circulation in JRR-3.
- Experimental study of differences in DNB heat flux between upflow and downflow in vertical rectangular channel.
- Heat Transfer Calculation of Simulated Heater Rods throughout Reflood Phase in Postulated PWR-LOCA Experiments
- Estimation of average void fraction in vertical two-phase flow channel under low liquid velocity.
- Evaluation of Local Power Distribution with Fine-mesh Core Model for High Temperature Engineering Test Reactor (HTTR).
- Effects of partial flow blockage on core heat transfer in forced-feed reflood tests.
- Upper plenum dump during reflood in PWR loss-of-coolant accident.
- Prediction of Dryout Heat Flux for Particle Bed Simulating Degraded Core in LWR Severe Core Damage Accidents
- Combined forced and free convective heat transfer characteristics in narrow vertical rectangular channel heated from both sides.
- Downcomer effective water head during reflood in postulated PWR LOCA.
- Experimental study of differences in single-phase forced-convection heat transfer characteristics between upflow and downflow for narrow rectangular channel.
- Experimental study of upper core quench in PWR reflood phase.
- Parameter effects on downcomer penetration of ECC water in PWR-LOCA.
- Analysis of saturated film boiling heat transfer in reflood phase of PWR-LOCA. Turbulent boundary layer model.:Turbulent Boundary Layer Model
- Evaluation on differences of fuel centerline temperatures of high performance fuel rods irradiated in JMTR.
- Film boiling heat transfer during reflood phase in postulated PWR loss-of-coolant accident.