Experimental Study of Homogeneously Dispersed Two-phase Critical Flow
スポンサーリンク
概要
- 論文の詳細を見る
To verify the principle of the occurrence of the critical flow, a homogeneously dispersed two-phase flow is tactfully realized in an experiment. Air and water are used as fluids of the two-phase flow and water is blown into the gas stream as minute droplets. The concrete critical flow condition is carefully obtained by measuring the thrust of the two-phase flow outside the exit plane of the duct. The critical conditions obtained at the experimental result are well coincident with the theoretical ones. At the same time the factors governing the critical conditions of the homogeneously dispersed two-phase flow are also made clear.
- 一般社団法人日本機械学会の論文
著者
関連論文
- Experimental Study of Falling Water Limitation under a Counter-Current Flow in a Vertical Rectangular Channel : 1st Report, Effect of Flow Channel Configuration and Introduction of CCFL Correlation
- Heat Transfer Characteristics in Narrow Vertical Rectangular Channels Heated from Both Sides
- Improvement of Critical Heat Flux Correlation for Research Reactors using Plate-Type Fuel
- Mechanism of Falling Water Limitation under Counter-current Flow through a Vertical Flow Path
- Experimental Study of Homogeneously Dispersed Two-phase Critical Flow
- Core thermohydraulic design with 20% LEU fuel for upgraded research reactor JRR-3.
- Experimental study of incipient nucleate boiling in narrow vertical rectangular channel simulating subchannel of upgraded JRR-3.
- Analytical study on thermal-hydraulic behavior of transient from forced circulation to natural circulation in JRR-3.
- Experimental study of differences in DNB heat flux between upflow and downflow in vertical rectangular channel.
- Heat Transfer Calculation of Simulated Heater Rods throughout Reflood Phase in Postulated PWR-LOCA Experiments
- Estimation of average void fraction in vertical two-phase flow channel under low liquid velocity.
- Evaluation of Local Power Distribution with Fine-mesh Core Model for High Temperature Engineering Test Reactor (HTTR).
- Effects of partial flow blockage on core heat transfer in forced-feed reflood tests.
- Upper plenum dump during reflood in PWR loss-of-coolant accident.
- Prediction of Dryout Heat Flux for Particle Bed Simulating Degraded Core in LWR Severe Core Damage Accidents
- Combined forced and free convective heat transfer characteristics in narrow vertical rectangular channel heated from both sides.
- Downcomer effective water head during reflood in postulated PWR LOCA.
- Experimental study of differences in single-phase forced-convection heat transfer characteristics between upflow and downflow for narrow rectangular channel.
- Experimental study of upper core quench in PWR reflood phase.
- Parameter effects on downcomer penetration of ECC water in PWR-LOCA.
- Analysis of saturated film boiling heat transfer in reflood phase of PWR-LOCA. Turbulent boundary layer model.:Turbulent Boundary Layer Model
- Film boiling heat transfer during reflood phase in postulated PWR loss-of-coolant accident.