Particle Modeling of Inductively Coupled Plasma and Radicals Flow to Predict Etch Rate of Silicon
スポンサーリンク
概要
- 論文の詳細を見る
Plasma and flow in an inductively coupled plasma reactor are examined using particle modeling. Electron collisions are simulated using the Monte Carlo method and hence the spatial distributions of plasma parameters and the production rate of Cl are obtained. The effect of gas pressure on the structure of plasma is examined for the gas pressures ranging from 0.5 to 2.0 Pa. The electron density increases with decreasing gas pressure in the case of chlorine discharge. Cl atoms are produced by dissociation or dissociative attachment; the dissociation is the dominant process. The rate of dissociation is high in the region of skin depth near the coil antenna. Flows of Cl_2, Cl, and SiCl_4 are examined using the direct simulation Monte Carlo method, where the production rate of Cl is the input data. The spatial distributions of density, temperature, and flow velocity are obtained, together with the radial distribution of the etch rate. The etch product SiCl_4 is assumed to be produced by 4Cl + Si → SiC_4 with reaction probability P_r. The etch rate distribution is obtained for values of P* ranging from 0.1 to 1. The simulated etch rate agrees with the measured etch rate at P_r = 0.16. [DOI: 10.1143/JJAP.41.2213]
- 社団法人応用物理学会の論文
- 2002-04-15
著者
-
NANBU Kenichi
Institute of Fluid Science, Tohoku University
-
Nanbu Kenichi
Institute For Fluid Science Tohoku University
-
Shiozawa Masakazu
Institute Of Fluid Science Tohoku University
関連論文
- Direct Simulation Scheme Derived from the Boltzmann Equation.VIII.Velocity Correlation Relevant to Boundary Conditions
- Particle Modeling of Transport of α-Ray Generated Ion Clusters in Air
- Hypersonic Rarefied Flows Around a Circular Disk Perpendicular to the Stream
- Stochastic Solution Method of the Model Kinetic Equation for Diatomic Gas
- Conservation of Angular Momentum in the Direct Simulation Monte Carlo Method
- Simulation of gigantic jets propagating from the top of thunderclouds to the ionosphere
- Randomly Stepped Model for Upward Electrical Discharge from Top of Thundercloud(Gases, Plasmas and Electric Discharges)
- Numerical analysis of initiation of gigantic jets connecting thunderclouds to the ionosphere
- Particle Modeling of the Electrical Discharge in the Upper Atmosphere above Thundercloud(Gases, Plasmas and Electric Discharges)
- Model for Collisions of SF_6^-, SF_5^-, or F^- Ions with SF_6 Molecules(Atomic and Molecular Physics)
- Collision Models between F^- ion and Ar, Kr, and Xe Atoms
- Monte Carlo Collision Simulation of Positive-Negative Ion Recombination for a Given Rate Constant
- Particle Modeling of Ionization and Three-Body Recombination in Fully Ionized Plasmas
- Electron Energy Distributions in Inductively Coupled Plasma of Argon : Nuclear Sciences, Plasmas, and Electric Discharges
- Electron Energy Distributions in Inductively Coupled Plasma : Comparison of Chlorine Discharge with Argon Discharge
- Particle-in-Cell Simulation of Expansions of Dense Plasma Sources for X-Ray Laser Systems
- Analysis of Three-Dimensional DC Magnetron Discharge by the Particle-in-Cell/Monte Carlo Method
- Rarefied Flows of the Monatomic Gas in a Two-Dimensional Expansion Nozzle
- Self-Consistent Particle Simulation of Radio Frequency CF_4 Discharge : Effect of Gas Pressure
- Effects of Target Erosion on the Growth Rate of Films Fabricated by the Sputtering Method
- Weighting Factor for Particle Modeling of Axisymmetrical Low Temperature Plasmas
- Detailed Structure of the Afterglow of Radio-Frequency Chlorine Discharge
- Three-Dimensional Particle-in-Cell/Monte Carlo Simulation of DC and RF Glow Discharge in Argon
- Analytical Solution of Axisymmetrical Poisson Equation for the Electric Field with Thin Sheaths(Gases, Plasmas and Electric Discharges)
- A Simple Model for Ar^+ -Ar, He^+ -He, Ne^+ -Ne and Kr^+ -Kr Collisions
- Relaxation Rates for Vibrational De-Excitation of Anharmonic Morse Oscillators
- Reply to a Comment by Koura on "Interrelations between Various Direct Simulation Methods for Solving the Boltzmann Equation"
- Analysis of the Couette Flow by Means of the New Direct-Simulation Method
- Stochastic Theory of Motion and Collision of Charged Particle in a Uniform Electric Field
- On the Simulation Method for the Bhatnager-Gross-Krook Equation
- Exact Direct-Simulation-Scheme for the Boltzmann Equation/Correlation of Molecular Velocities Subject to Renewal Processes
- Flow of nanoparticles in a reactor fabricating solar cells
- Couette Flow in Continuum to Free Molecular Regime
- 3-D Structure of DC Glow Discharge by Self-Consistent Monte Carlo Simulation
- Spherical and Cylindrical Expansions of Ultrahigh Density Plasma Sources for X-Ray Laser System
- Particle Modeling of Inductively Coupled Plasma and Radicals Flow to Predict Etch Rate of Silicon
- Simple Method to Determine Collisional Event in Monte Carlo Simulation of Electron-Molecule Collision
- Direct Simulation Scheme Derived from the Boltzmann Equation. II. Multicomponent Gas Mixtures
- Interrelations between Various Direct Simulation Methods for Solving teh Boltzmann Equation
- Rarefied Flows of the Monatomic Gas in an Axi-Symmetric Expansion Nozzle
- Stochastic Solution Method of the Master Equation and the Model Boltzmann Equation
- Directo Simulation Scheme Derived from the Boltzmann Equation. IV. Correlation of Velocity
- Variable Hard-Sphere Model for Gas Mixture
- Particle Modeling of Transport of $\alpha$-Ray Generated Ion Clusters in Air
- Direct Simulation Scheme Derived from the Boltzmann Equation.VI.Velocity Correlation in a Model Cell
- The Displacement of a Simulated Molecule Following the Stochastic Process Derived from the Boltzmann Equation
- Speedup of the Direct Simulation Methods for Solving the Boltzmann Equation
- Velocity-Slip and Temperature Difference of Gas Mixtures in a Free-Jet Expansion
- Derivation from Kac's Master Equation of the Stochastic Laws for Simulating Molecular Collisions
- Direct Solutions of Finite-Difference Systems for Poisson's Equation I. Simple Cases
- Reply to a Conunent by Koura on "Direct Simulation Scheme Derived from the Boltzmann Equation. I. Monocomponent Gases"
- Effect of Driving Frequency on the Electron Energy Probability Function of Capacitively Coupled Argon Plasmas Comparison between Simulation and Experiment
- Collision Models between F- ion and Ar, Kr, and Xe Atoms
- Sheath Model for Dual-Frequency Capacitively Coupled Plasmas
- Analysis of Three-Dimensional DC Magnetron Discharge by the Particle-in-Cell/Monte Carlo Method
- Self-Consistent Particle Modeling of Inductively Coupled CF4 Plasmas: Effect of Wafer Biasing
- Direct Solutions of Finite-Difference Systems for Poisson's Equation II. Complex Cases
- Randomly Stepped Model for Upward Electrical Discharge from Top of Thundercloud(Gases, Plasmas and Electric Discharges)
- Simulation of gigantic jets propagating from the top of thunderclouds to the ionosphere