Further Studies on the Properties of Violet-colored Acid Phosphatase from Soybean
スポンサーリンク
概要
- 論文の詳細を見る
The properties of the acid phosphatase isolated in a homogeneous state from soybean (Glycine max) have been investigated in detail. The enzyme catalyzed the hydrolysis of a wide variety of phospholylated compounds including phosphomonoesters, nucleotide mono-, di-and triphosphate, and inorganic pyrophosphate. No activity was detected for nicotinamide adenine dinucleotide and diphenyl phosphate. The enzyme activity was inhibited by orthophosphate, arsenate, fluoride, molybdate, and heavy metal ions including Cu^<2+>, Zn^<2+>, Hg^<2+> and Ag^+. Treatment of the enzyme with chelating agents, reducing agents and oxidizing agents resulted in inactivation of the enzyme. The reduction of the absorbance at 540 nm of the enzyme was observed in parallel with the loss of the enzyme activity by the treatment with ethylenediaminetetraacetic acid and rongalit, but not with H_2O_2. The enzyme had a molecular weight of approximately 240000. Polyacrylamide disc gel electrophoresis in the presence of sodium dodecyl sulfate suggested that the enzyme dissociated into subunits with molecular weight of approximately 60000. The amino acid and carbohydrate composition of the enzyme were also determined.
- 1977-12-25
著者
-
小原 晃
Kyoto College of Pharmacy
-
小原 晃
Laboratory Of Biochemistry Kyoto Pharmaceutical University
-
藤本 貞毅
Kyoto Pharmaceutical University
-
藤本 貞毅
Laboratory Of Biochemistry Kyoto Pharmaceutical University
-
中川 力
Kyoto College of Pharmacy
-
中川 力
Giba-geigy (japan) Limited
関連論文
- Studies on the Active Site of Papain. III. Inhibition by Dibasic Acids
- Two Distinct Low-Molecular-Weight Acid Phosphatases from Rat Liver
- Inactivation of Cholinesterase by Ascorbic Acid in the Presence of Cupric Ions : A Possible Mechanism for the Inactivation of an Enzyme by the Metal-Catalyzed Oxidation System
- Nonenzymatic Glycation of Transferrin : Decrease of Iron-Binding Capacity and Increase of Oxygen Radical Production
- On the Mechanism of Inactivation of Active Papain by Ascorbic Acid in the Presence of Cupric Ions
- Hydroxylation of Phenylalanine and Salicylate by Stimulated Polymorphonuclear Leukocytes and the Accelerating Effect of Glutathione on Their Hydroxylation
- Effect of Radical Scavengers on the Inactivation of Papain by Ascorbic Acid in the Presence of Cupric Ions
- Purification and Characterization of Zinc-Dependent Acid Phosphatase from Bovine Brain
- Formation of a Hydroxyl Radical by the Myeloperoxidase-NADH-Oxygen System
- Site-Specific Inactivation of Papain by Ascorbic Acid in the Presence of Cupric Ions
- Characterization of Cationic Acid Phosphatase Isozyme from Rat Liver Mitochondria
- モルモット血清中のo-及びm-Tyrosine含量に及ぼす銅投与の影響
- Hydroxylation of Phenylalanine by Myeloperoxidase-Hydrogen Peroxide System
- Accelerating Effect of Glutathione on Hydroxylation of Phenylalanine by Stimulated Polymorphonuclear Leukocytes
- Tyrosine Formation from Phenylalanine by Ultraviolet Irradiation
- On the Mechanism of Inactivation of Papain by Hydroxylamine
- Studies on the Formation of 3,4-Dihydroxyphenylalanine, m-Tyrosine and o-Tyrosine from L-Phenylalanine by Rat Liver and Adrenal
- Chemical Modification of Essential Histidine Residues in Mn(III)-Acid Phosphatase by Diethylpyrocarbonate in the Presence of F^- Ion(Biological)
- Release of Bases from Deoxyribonucleic Acid by Ascorbic Acid in the Presence of Cu^
- Subcellular Localization and Some Properties of Intermediate-Molecular-Weight Acid Phosphatase from Rat Liver
- In Vivo Studies on the Formation of m-Tyrosine and o-Tyrosine from L-Phenylalanine in Rats
- サツマイモに含まれる2種の酸性ホスファターゼの酵素学的, 物理化学的, 免疫学的性質の比較
- Formation of m-Tyrosine and o-Tyrosine from L-Phenylalanine in Various Tissues of Rats
- The Photochemical Decomposition and Hydroxylation of Phenylalanine in the Presence of Riboflavin
- Hydroxylation of Phenylalanine by the Hypoxanthine-Xanthine Oxidase System
- THE FORMATION OF m-TYROSINE AND o-TYROSINE IN RATS
- Chymopapain. I. Oxidation of Tryptophan Residues by N-Bromosuccinimide
- Chymopapain. II. Photooxidation of Histidine Residues
- Quantitative Analysis of Primary Amines by Ion-exchange Chromatography
- Studies on the Active Site of Papain. V. Photooxidation of Histidine Residues
- Studies on the Active Site of Papain. VIII. Photooxidation of Tryptophan Residues
- Studies on the Active Site of Papain. VII. States of Tryptophan Residues
- Studies on the Active Site of Papain. VI. Chemical Modification of Tryptophan Residues by N-Bromosuccinimide
- Studies on Violet-colored Acid Phosphatase : Inactivation of Soybean Enzyme by Cysteine
- Further Studies on the Properties of Violet-colored Acid Phosphatase from Soybean
- Purification and Some Properties of Violet-colored Acid Phosphatase from Spinach Leaves
- Studies on the Hydroxylation of Phenylalanine by 6,7-Dimethyl-5,6,7,8-tetrahydropteridine
- On the Mechanism of Inactivation of Papain by Bisulfite
- The Determination of m-Tyrosine in Human Plasma by High Performance Liquid Chromatography
- Studies on the Hydroxylation of Phenylalanine by the Ascorbic Acid-Hydrogen Peroxide System
- Formation of m-Tyrosine and o-Tyrosine from L-Phenylalanine by Rat Brain Homogenate
- Quantitative Analysis of the Isomers of Hydroxyphenylalanine by High-Performance Liquid Chromatography using a Fluorimetric Detector
- Studies on the Hydroxylation of Phenylalanine by Hydrogen Peroxide in the Presence of Cupric Ions
- Studies on Inactivation of Papain by Ascorbic Acid in the Presence of Cupric Ions
- Nonenzymatic Hydroxylation of Phenylalanine by Ascorbic Acid and Cu^
- Quantitative Analysis of the Isomers of Hydroxyphenylalanine by Ion-exchange Chromatography
- Studies on the Active Site of Papain. II. Inhibition by Cyclic Imide Compounds
- Studies on the Active Site of Papain. I. Inhibition by Barbituric Acid Derivatives with Active Methylene Group and Active Imide Group
- Inactivation of Yeast Alcohol Dehydrogenase by Dehydroascorbic Acid and D-Arabinosone