PHYTOCHROME-INTERACTING FACTOR 4 and 5 (PIF4 and PIF5) Activate the Homeobox ATHB2 and Auxin-Inducible IAA29 Genes in the Coincidence Mechanism Underlying Photoperiodic Control of Plant Growth of Arabidopsis thaliana
スポンサーリンク
概要
- 論文の詳細を見る
- Oxford University Pressの論文
- 2011-08-01
著者
-
NIWA Yusuke
Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University
-
MIZUNO Takeshi
Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University
-
Yamashino Takafumi
Nagoya Univ. Nagoya Jpn
-
Nakamichi Norihito
Riken Yokohama Jpn
-
Nakamichi Norihito
Laboratory Of Molecular Microbiology School Of Agriculture Nagoya University
-
Yamashino T
Nagoya Univ. Nagoya Jpn
-
Mizuno Takeshi
Lab. Of Molecular Microbiology School Of Agriculture Nagoya Univ.
-
Mizuno T
Lab. Of Molecular Microbiology School Of Agriculture Nagoya Univ.
-
MIZUNO Takeshi
School of Agriculture, Nagoya University
-
Nakamura Yuko
Laboratory Of Molecular Microbiology School Of Agriculture Nagoya University
-
NAKANISHI Hanayo
Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University
-
KUNIHIRO Atsushi
Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University
-
Yamashino Takafumi
Laboratory Of Molecular Microbiology School Of Agriculture Nagoya University
-
Niwa Yusuke
Laboratory Of Molecular Microbiology School Of Agriculture Nagoya University
-
Moritz Thomas
Laboratory Of Molecular Microbiology School Of Agriculture Nagoya University
-
Takeuchi Michio
Department Of Applied Molecular Biology And Biochemistry Tokyo University Of Agriculture And Technol
-
NAKANISHI Hanayo
School of Agriculture, Nagoya University
-
Mizuno Takeshi
Laboratory Of Microbiology School Of Agriculture Nagoya University
-
NAKAMICHI Norihito
Graduate School of Bioagricultural Sciences, Nagoya University
-
Mizuno T
Faculty Of Agriculture Tokyo University Of Agriculture And Technology
-
Kunihiro Atsushi
Laboratory Of Molecular Microbiology School Of Agriculture Nagoya University
-
YAMASHINO Takafumi
Laboratory of Molecular and Functional Cenomics, School of Agriculture, Nagoya University
-
NAKAMICHI Norihito
Laboratory of Molecular and Functional Cenomics, School of Agriculture, Nagoya University
関連論文
- A genetic study of the arabidopsis circadian clock with reference to the Timing of Cab Expression 1 (TOC1) gene
- The Common Function of a Novel Subfamily of B-Box Zinc Finger Proteins with Reference to Circadian-Associated Events in Arabidopsis thaliana
- Mutants of Circadian-Associated PRR Genes Display a Novel and Visible Phenotype as to Light Responses during De-Etiolation of Arabidopsis thaliana Seedlings
- A Link between Cytokinin and ASL9 (ASYMMETRIC LEAVES 2 LIKE 9) That Belongs to the AS2/LOB (LATERAL ORGAN BOUNDARIES) Family Genes in Arabidopsis thaliana
- Characterization of a Unique GATA Family Gene That Responds to Both Light and Cytokinin in Arabidopsis thaliana
- AHK5 Histidine Kinase Regulates Root Elongation Through an ETR1-Dependent Abscisic Acid and Ethylene Signaling Pathway in Arabidopsis thaliana
- Combinatorial Microarray Analysis Revealing Arabidopsis Genes Implicated in Cytokinin Responses through the His→Asp Phosphorelay Circuitry
- Rapid Response of Arabidopsis T87 Cultured Cells to Cytokinin through His-to-Asp Phosphorelay Signal Transduction
- Arabidopsis Response Regulator, ARR22, Ectopic Expression of Which Results in Phenotypes Similar to the wol Cytokinin-Receptor Mutant
- Characterization of Plant Circadian Rhythms by Employing Arabidopsis Cultured Cells with Bioluminescence Reporters
- Comparative Studies on the Type-B Response Regulators Revealing their Distinctive Properties in the His-to-Asp Phosphorelay Signal Transduction of Arabidopsis thaliana
- Characterization of the APRR9 Pseudo-Response Regulator Belonging to the APRR1/TOC1 Quintet in Arabidopsis thaliana
- Characterization of the Rice Circadian Clock-Associated Pseudo-Response Regulators in Arabidopsis thaliana
- Characterization of a Set of Phytochrome-Interacting Factor-Like bHLH Proteins in Oryza sativa
- Comparative Overviews of Clock-Associated Genes of Arabidopsis thaliana and Oryza sativa
- Type-B ARR Transcription Factors, ARR10 and ARR12, are Implicated in Cytokinin-Mediated Regulation of Protoxylem Differentiation in Roots of Arabidopsis thaliana
- PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, Together Play Essential Roles Close to the Circadian Clock of Arabidopsis thaliana
- The Arabidopsis Pseudo-response Regulators, PRR5 and PRR7, Coordinately Play Essential Roles for Circadian Clock Function
- PRR5 (PSEUDO-RESPONSE REGULATOR 5) Plays Antagonistic Roles to CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) in Arabidopsis thaliana
- Circadian-Associated Rice Pseudo Response Regulators (OsPRRs) : Insight into the Control of Flowering Time
- Molecular Dissection of the Promoter of the Light-Induced and Circadian-Controlled APRR9 Gene Encoding a Clock-Associated Component of Arabidopsis thaliana
- Molecular Basis for Promoter Selectivity of the Transcriptional Activator OmpR of Escherichia coli : Isolation of Mutants That Can Activate the Non-Cognate kdpABC Promoter
- Circadian-Controlled Basic/Helix-Loop-Helix Factor, PIL6, Implicated in Light-Signal Transduction in Arabidopsis thaliana
- Characterization of Circadian-Associated APRR3 Pseudo-Response Regulator Belonging to the APRR1/TOC1 Quintet in Arabidopsis thaliana
- Comparative Studies of the AHP Histidine-containing Phosphotransmitters Implicated in His-to-Asp Phosphorelay in Arabidopsis thaliana
- Characterization of bZip-Type Transcription Factor AtfA with Reference to Stress Responses of Conidia of Aspergillus nidulans
- The SskA and SrrA Response Regulators Are Implicated in Oxidative Stress Responses of Hyphae and Asexual Spores in the Phosphorelay Signaling Network of Aspergillus nidulans
- Characterization of the bZip-Type Transcription Factor NapA with Reference to Oxidative Stress Response in Aspergillus nidulans
- Novel Reporter Gene Expression Systems for Monitoring Activation of the Aspergillus nidulans HOG Pathway
- The Evolutionarily Conserved OsPRR Quintet : Rice Pseudo-Response Regulators Implicated in Circadian Rhythm
- Comparative Genetic Studies on the APRR5 and APRR7 Genes Belonging to the APRR1/TOC1 Quintet Implicated in Circadian Rhythm, Control of Flowering Time, and Early Photomorphogenesis
- The Type-A Response Regulator, ARR15, Acts as a Negative Regulator in the Cytokinin-Mediated Signal Transduction in Arabidopsis thaliana
- A Link between Circadian-Controlled bHLH Factors and the APRR1/TOC1 Quintet in Arabidopsis thaliana
- Pseudo-Response Regulators (PRRs) or True Oscillator Components (TOCs)
- Effect of the arcA Mutation on the Expression of Flagella Genes in Escherichia coli
- Importance of Stereospecific Positioning of the Upstream cis-Acting DNA Element Containing a Curved DNA Structure for the Functioning of the Escherichia coli pro V Promoter
- A Cyanobacterial Gene That Interferes with the Phosphotransfer Signal Transduction Involved in the Osmoregulatory Expression of ompC and ompF in Escherichia coli
- A Cyanobacterial Gene Encoding a Protein with Extensive Homology to Mammalian Phosphoribosylpyrophosphate Synthetase
- A Controllable Expression-secretion Vector Constructed from the Multiple trp Promoter-operator, the Signal Peptide Region of the ompF Gene and the trpR Gene in Escherichia coli(Microbiology & Fermentation Industry)
- Characterization of the Prr1 Response Regulator with Special Reference to Sexual Development in Schizosaccharomyces pombe(Biochemistry & Molecular Biology)
- His-to-Asp Phosphorelay Circuitry for Regulation of Sexual Development in Schizosaccharomyces pombe(Biochemistry & Molecular Biology)
- Genetic Analysis of the His-to-Asp Phosphorelay Implicated in Mitotic Cell Cycle Control : Involvement of Histidine-Kinase Genes of Schizosaccharomyces pombe(Microbiology & Fermentation Technology)
- The Arabidopsis Sensor His-kinase, AHK4, Can Respond to Cytokinins
- Identification and Characterization of a Novel Gene, hos2^+, the Function of Which Is Necessary for Growth under High Osmotic Stress in Fission Yeast
- Identification and Characterization of a Novel Gene, hos3^+, the Function of Which Is Necessary for Growth under High Osmotic Stress in Fission Yeast
- A Fission Yeast Gene (prr1^+ ) That Encodes a Response Regulator Implicated in Oxidative Stress Response
- Clarification of the Promoter Structure of the Osmoregulated gpd1^+ Gene Encoding an Isozyme of NADH-dependent Glycerol-3-phosphate Dehydrogenase in Fission Yeast
- Construction and Characterization of a Deletion Mutant of gpd2 That Encodes an Isozyme of NADH-Dependent Glycerol-3-phosphate Dehydrogenase in Fission Yeast
- Identification and Classification of Two-component Systems That Affect rpoS Expression in Escherichia coli(Biochemistry & Molecular Biology)
- A Novel Gene That Interferes with the Phosphotransfer Signal Transduction Mediated by the EnvZ Osmosensor in Escherichia coli
- An Arabidopsis Histidine-Containing Phosphotransfer (HPt) Factor Implicated in Phosphorelay Signal Transduction : Overexpression of AHP2 in Plants Results in Hypersensitiveness to Cytokinin
- The APRR1/TOC1 Quintet Implicated in Circadian Rhythms of Arabidopsis thaliana : I. Characterization with APRR1-Overexpressing Plants
- Light Response of the Circadian Waves of the APRR1/TOC1 Quintet : When Does the Quintet Start Singing Rhythmically in Arabidopsis?
- Circadian Waves of Expression of the APRR1/TOC1 Family of Pseudo-Response Regulators in Arabidopsis thaliana:Insight into the Plant Circadian Clock
- Cell Autonomous Circadian Waves of the APRR1/TOC1 Quintet in an Established Cell Line of Arabidopsis thaliana
- Compilation and Characterization of Histidine-Containing Phosphotransmitters Implicated in His-to-Asp Phosphorelay in Plants : AHP Signal Transducers of Arabidopsis thaliana
- Genes Encoding Pseudo-Response Regulators : Insight into His-to Asp Phosphorelay and Circadian Rhythm in Arabidopsis thaliana
- Histidine-Containing Phosphotransfer(HPt) Signal Transducers Implicated in His-to-Asp Phosphorelay in Arabidopsis
- The Arabidopsis AHK4 Histidine Kinase is a Cytokinin-Binding Receptor that Transduces Cytokinin Signals Across the Membrane
- Characterization of Genetic Links between Two Clock-Associated Genes, GI and PRR5 in the Current Clock Model of Arabidopsis thaliana
- The Function of the Clock-Associated Transcriptional Regulator CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) in Arabidopsis thaliana
- Characterization of Circadian-Associated Pseudo-Response Regulators: I. Comparative Studies on a Series of Transgenic Lines Misexpressing Five Distinctive PRR Genes in Arabidopsis thaliana
- Expression of the Cytokinin-Induced Type-A Response Regulator Gene ARR9 Is Regulated by the Circadian Clock in Arabidopsis thaliana
- A Genome-Wide View of the Escherichia coli BasS-BasR Two-component System Implicated in Iron-responses
- Compilation and Characterization of aNovel WNK Family of Protein Kinases in Arabiodpsis thaliana with Reference to Circadian Rhythms(Biochemistry & Molecular Biology)
- The Structure and Function of the Histidine-Containing Phosphotransfer(HPt) Signaling Domain of Escherichia coli ArcB Sensor
- Characterization of Three Putative Sub-Domains in the Signal-Input Domain of the ArcB Hybrid Sensor in Escherichia coli
- Repression of the Gene Encoding Succinate Dehydrogenase in Response to Glucose Is Mediated by the EIICB^ Protein in Escherichia coli
- Aberrant Expression of the Arabidopsis Circadian-Regulated APRR5 Gene Belonging to the APRR1/TOC1 Quintet Results in Early Flowering and Hypersensitiveness to Light in Early Photomorphogenesis
- Characterization of Circadian-Associated Pseudo-Response Regulators: II. The Function of PRR5 and Its Molecular Dissection in Arabidopsis thaliana
- Roles of Arabidopsis PSEUDO-RESPONSE REGULATOR (PRR) genes in the opposite controls of flowering time and organ elongation under long-day and continuous light conditions
- Identification of Amino Acid Substitutions that Render the Arabidopsis Cytokinin Receptor Histidine Kinase AHK4 Constitutively Active
- Rhythmic and Light-Inducible Appearance of Clock-Associated Pseudo-Response Regulator Protein PRR9 Through Programmed Degradation in the Dark in Arabidopsis thaliana
- Genetic Linkages Between Circadian Clock-Associated Components and Phytochrome-Dependent Red Light Signal Transduction in Arabidopsis thaliana
- Genetic Linkages of the Circadian Clock-Associated Genes, TOC1, CCA1 and LHY, in the Photoperiodic Control of Flowering Time in Arabidopsis thaliana
- Arabidopsis Clock-Associated Pseudo-Response Regulators, PRR9, PRR7 and PRR5 Coordinately and Positively Regulate Flowering Time Through the Canonical CONSTANS-Dependent Photoperiodic Pathway
- The APRR3 Component of the Clock-Associated APRR1/TOC1 Quintet is Phosphorylated by a Novel Protein Kinase Belonging to the WNK Family, the Gene for which is also Transcribed Rhythmically in Arabidopsis thaliana
- The APRR1/TOC1 Quintet Implicated in Circadian Rhythms of Arabidopsis thaliana : II. Characterization with CCA1-Overexpressing Plants
- Characterization of the RcsC→YojN→RcsB Phosphorelay Signaling Pathway Involved in Capsular Synthesis in Escherichia coli(Biochemistry & Molecular Biology)
- Deletion of the yhhP Gene Results in Filamentous Cell Morphology in Escherichia coil
- Genomewide Characterization of the Light-Responsive and Clock-Controlled Output Pathways in Lotus japonicus with Special Emphasis of its Uniqueness
- PHYTOCHROME-INTERACTING FACTORS PIF4 and PIF5 Are Implicated in the Regulation of Hypocotyl Elongation in Response to Blue Light in Arabidopsis thaliana
- The Circadian Clock Regulates the Photoperiodic Response of Hypocotyl Elongation through a Coincidence Mechanism in Arabidopsis thaliana
- Transcript Profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR Arrhythmic Triple Mutant Reveals a Role for the Circadian Clock in Cold Stress Response
- A Genetic Study of the Arabidopsis Circadian Clock with Reference to the TIMING OF CAB EXPRESSION 1 (TOC1) Gene
- Involvement of Arabidopsis Clock-Associated Pseudo-Response Regulators in Diurnal Oscillations of Gene Expression in the Presence of Environmental Time Cues
- Insight into Missing Genetic Links Between Two Evening-Expressed Pseudo-Response Regulator Genes TOC1 and PRR5 in the Circadian Clock-Controlled Circuitry in Arabidopsis thaliana
- Anti-cariogenic Properties of a Water-soluble Extract from Cacao(Food & Nutrition Sience)
- Effect of Hydrostatic Pressure on the Synthesis of Outer Membrane Proteins in Escherichia coli
- Sequence-directed DNA Curvature in Activator-binding Sequence in the Escherichia coli kdpABC Promoter
- Overproduction and Rapid Purification of the Escherichia coli Histone-like Protein, H-NS(Biological Chemistry)
- A Rapid Method for Disrupting Genes in the Escherichia coli Genome
- Classification of the Genes Involved in the Two-Component System of the Moss Physcomitrella patens
- A Small Subfamily of Arabidopsis RADIALIS-LIKE SANT/MYB Genes: A Link to HOOKLESS1-Mediated Signal Transduction during Early Morphogenesis
- Characterization of Genetic Links between Two Clock-Associated Genes, GI and PRR5 in the Current Clock Model of Arabidopsis thaliana
- The Common Function of a Novel Subfamily of B-Box Zinc Finger Proteins with Reference to Circadian-Associated Events in Arabidopsis thaliana
- Characterization of Circadian-Associated Pseudo-Response Regulators : II. The Function of PRR5 and Its Molecular Dissection in Arabidopsis thaliana
- Characterization of a Set of Phytochrome-Interacting Factor-Like bHLH Proteins in Oryza sativa
- Mutants of Circadian-Associated PRR Genes Display a Novel and Visible Phenotype as to Light Responses during De-Etiolation of Arabidopsis thaliana Seedlings
- PHYTOCHROME-INTERACTING FACTOR 4 and 5 (PIF4 and PIF5) Activate the Homeobox ATHB2 and Auxin-Inducible IAA29 Genes in the Coincidence Mechanism Underlying Photoperiodic Control of Plant Growth of Arabidopsis thaliana