Genome-Wide Expression Profile of Sake Brewing Yeast under Shaking and Static Conditions
スポンサーリンク
概要
- 論文の詳細を見る
To identify the genes responsible for characteristics, that are different as between sake brewing yeasts and laboratory yeast strains, we used a DNA microarray to compare the genome-wide gene expression profiles of a sake yeast, Saccharomyces cerevisiae K-9 (kyokai 9), and a laboratory yeast, S. cerevisiae X2180-1A, under shaking and static conditions.The genes overexpressed in K-9 more than in X2180-1A were related to C-metabolism, including the HXT, ATP, and COX genes, ergosterol biosynthesis, ERG genes, and thiamine metabolism, THI genes. These genes may contribute to higher growth rates and fermentation ability and the ethanol tolerance of sake yeast.The genes underexpressed in K-9 more than in X2180-1A were CUP1-1 and CUP1-2, PHO genes, which may explain the low copper tolerance and low acid phosphatase activity of sake yeast. These underexpressed genes agree with the features and the alteration of the genome structure of sake yeast.
- 社団法人 日本農芸化学会の論文
- 2007-02-23
著者
-
Fujii Tsutomu
National Research Institute of Brewing
-
Fujii Tsutomu
National Research Institute Of Brewing:graduate School Of Biosphere Sciences Hiroshima University
-
Iefuji Haruyuki
Graduate School of Biosphere Science, Hiroshima University
-
Iefuji Haruyuki
National Res. Inst. Of Brewing
-
Iefuji Haruyuki
National Research Institute Of Brewing:graduate School Of Biosphere Sciences Hiroshima University
-
Shobayashi Megumi
National Research Institute of Brewing
-
Ukena Eiko
National Research Institute Of Brewing
関連論文
- PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae(BREWING AND FOOD TECHNOLOGY)
- Cloning and characterization of a novel phytase from wastewater treatment yeast Hansenula fabianii J640 and expression in Pichia pastoris(ENVIRONMENTAL BIOTECHNOLOGY)
- PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae
- Isolation and Characterization of a Yeast Cryptococcus sp. S-2 That Produces Raw Starch-digesting α-Amylase, Xylanase, and Polygalacturonase
- Effects of Accumulated S-Adenosylmethionine on Growth of Yeast Cells
- Effects of Culture Conditions on Ergosterol Biosynthesis by Saccharomyces cerevisiae
- FE-P11 The stability of S-adenosyl-L-methionine in spray-dried SAM yeast with various additives(Section IX Food Engineering)
- S-Adenosylmethionine (SAM)-Accumulating Sake Yeast Suppresses Acute Alcohol-Induced Liver Injury in Mice
- Sake Yeast Suppresses Acute Alcohol-Induced Liver Injury in Mice
- Increase in Spontaneous Locomotive Activity in Rats Fed Diets Containing Sake Lees or Sake Yeast