Atmospheric Pressure Glow-Discharge Plasmas with Gas–Liquid Interface
スポンサーリンク
概要
- 論文の詳細を見る
An atmospheric pressure glow-discharge plasma in contact with liquid is generated using a capacitively coupled plasma (CCP) method, by which a boundary region between a plasma (gas-phase) and liquid paraffin (liquid-phase), i.e., gas–liquid interface is considered to be important. A stable atmospheric pressure plasma with liquid is achieved by selecting the appropriate mesh electrode and liquid paraffin. In addition, results of optical emission spectroscopy indicate that carbonic species come from paraffin in the interface region of the plasma. This plasma is accordingly expected to promote the use of an attractive plasma process for creating materials encapsulating various elements in liquids.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2006-10-30
著者
-
OKADA Takeru
Department of Electronic Engineering, Tohoku University
-
Hatakeyama Rikizo
Department Of Electronic Engineering Tohoku University
-
Baba Kazuhiko
Department Of Electronic Engineering Tohoku University
-
Kaneko Toshiro
Department Of Electronic Engineering Tohoku University
-
Okada Takeru
Department of Electronic Engineering, Tohoku University, Sendai 980-8579, Japan
-
BABA Kazuhiko
Department of Electronic Engineering, Tohoku University, Sendai 980-8579, Japan
関連論文
- Effects of Ion Energy Control on Production of Nitrogen-C_ Compounds by Ion Implantation
- Creation of Novel Structured Nanocarbons Based on Plasma Technology (第45回真空に関する連合講演会プロシーディングス--2004年10月27日〜29日,大阪)
- Formation of p-n Junction in Double-Walled Carbon Nanotubes Based on Heteromaterial Encapsulation
- Efficient Synthesis of Gold Nanoparticles Using Ion Irradiation in Gas-Liquid Interfacial Plasmas
- Single-Stranded DNA Insertion into Single-Walled Carbon Nanotubes by Ion Irradiation in an Electrolyte Plasma
- Modification of Double-Walled Carbon Nanotubes by Cs Plasma Ion Irradiation
- Atmospheric Pressure Glow-Discharge Plasmas with Gas-Liquid Interface
- Double Layer Dynamics in a Collisionless Magnetoplasma
- Stationary Double Layers in a Collisionless Magnetoplasma
- Electrostatic Potentials of Stationary Plasma Flows Along Magnetic Well and Hill
- A Mechanism for Potential-Driven Electrostatic Ion Cyclotron Oscillations in a Plasma
- Probe Measurements in a Negative Ion Plasma
- Plasma Potential Formation Due to Localized Radio-Frequency Electric Fields
- Analysis of Ion Species in Potassium-Fullerene Plasmas
- Electrostatic Ion-Cyclotron Oscillations Induced by an Emissive Disc Plate Floating in a Plasma
- Electron Injections from a Floated Plate into a Collisionless Plasma
- Plasma Particle Drifts Due to Traveling Waves with Cyclotron Frequencies
- Neutralized, Collisionless, Surface Ionized Ion Beam Source
- Optimum Condition for Spatial Ion Cyclotron Resonance in a Multiple Magnetic Mirror Field
- Versatile Control of Carbon Nanotube Semiconducting Properties by DNA Encapsulation Using Electrolyte Plasmas
- Spatial Evolution of Ion Beams Passing through a Multiple Magnetic Mirror Field
- Growth of Single-Walled Carbon Nanotubes from Nonmagnetic Catalysts by Plasma Chemical Vapor Deposition
- Experimental Evidence of m=-1 Helicon Wave Cutoff in Plasmas(Gases, Plasmas and Electric Discharges)
- Harvesting Infrared Solar Energy by Semiconducting Single-Walled Carbon Nanotubes
- Novel Properties of Single-Walled Carbon Nanotubes with Encapsulated Magnetic Atoms
- Encapsulation of Nickel Atom inside Fullerene by Energetic Ion Irradiation
- Freestanding Individual Single-walled Carbon Nanotube Synthesis Based on Plasma Sheath Effects
- Time Evolution of Nucleation and Vertical Growth of Carbon Nanotubes during Plasma-Enhanced Chemical Vapor Deposition
- Liquid-Gas Interfacial Plasmas for Formation of Novel Nanobiomaterials
- Highly Efficient Synthesis of Nitrogen-Atom Endohedral Fullerene by Controlling Plasma Ion Behaviors
- Chemical Modification of Carbon Nanotube Based Bio-Nanosensor by Plasma Activation
- Creation of Nanoparticle--Nanotube Conjugates for Life-Science Application Using Gas--Liquid Interfacial Plasmas
- Reductants in Gold Nanoparticle Synthesis Using Gas-Liquid Interfacial Discharge Plasmas
- Synthesis of Superfine Ethanol-Soluble CoO Nanoparticles via Discharge Plasma in Liquid
- Verification of Polarization Reversal of Electromagnetic Waves with Electron Cyclotron Frequency Controlling Plasma-Structure Formation
- Drift-Wave Instabilities Modified by Parallel and Perpendicular Flow Velocity Shears in Magnetized Plasmas
- Effects of Ion Energy Control on Production of Nitrogen–C60 Compounds by Ion Implantation
- Flow Energy Control of Nitrogen Ions Generated by Electron Cyclotron Resonance
- Atmospheric Pressure Glow-Discharge Plasmas with Gas–Liquid Interface
- Effects of Ion Bombardment on Carbon Nanotube Formation in Strongly Magnetized Glow-Discharge Plasmas
- Growth of Vertically Aligned Carbon Nanotube Bundles using Atmospheric-Pressure Microplasma
- Alkali-Halogen Plasma Generation Using Alkali Salt
- Single-Stranded DNA Insertion into Single-Walled Carbon Nanotubes by Ion Irradiation in an Electrolyte Plasma
- Fast Growth of Carbon Nanowalls from Pure Methane using Helicon Plasma-Enhanced Chemical Vapor Deposition
- Measurements of Potential-Driven Electrostatic Ion Cyclotron Oscillations in a Plasma
- Formation of C60- Encapsulated Double-Walled Carbon Nanotubes with Novel Electrical Transport Properties Based on Plasma Technology
- Modification of Electrical Transport Properties of Single-Walled Carbon Nanotubes Realized by Negative-Ion Irradiation with Electron-Free Pure Alkali–Halogen Plasma