Drift-Wave Instabilities Modified by Parallel and Perpendicular Flow Velocity Shears in Magnetized Plasmas
スポンサーリンク
概要
- 論文の詳細を見る
Plasma flow velocity shears parallel and perpendicular to magnetic field lines are independently controlled and superimposed by a modified plasma-synthesis method with concentrically three-segmented electron and ion emitters. The fluctuation amplitude of a drift wave with an azimuthal mode number m = 3 is observed to increase with increasing parallel shear strength in the absence of a perpendicular shear. When the perpendicular shear is superimposed on the parallel shear, the drift wave with m = 3 is found to transform into that with m = 2. Furthermore, the parallel shear strength required for excitation of the drift wave increases with a decrease in the azimuthal mode number. Based on these results, superposition of the parallel and perpendicular shears can affect characteristics of the drift wave through variation of the azimuthal mode number. These phenomena can be verified by theoretical calculations of the growth rate of the drift wave using an eigenmode analysis.
- プラズマ・核融合学会の論文
著者
-
Hatakeyama Rikizo
Department Of Electronic Engineering Tohoku University
-
Kaneko Toshiro
Department Of Electronic Engineering Tohoku University
-
KANEKO Toshiro
Department of Electronic Engineering, Tohoku University, Sendai 980-8579, Japan
-
TAMURA Shuichi
Department of Electronic Engineering, Tohoku University, Sendai 980-8579, Japan
-
ITO Atsushi
National Institute for Fusion Science, Toki 509-5292, Japan
-
HATAKEYAMA Rikizo
Department of Electronic Engineering, Tohoku University, Sendai 980-8579, Japan
-
ITO Atsushi
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
-
ITO Atsushi
National Institute for Fusion Science
関連論文
- Effects of Ion Energy Control on Production of Nitrogen-C_ Compounds by Ion Implantation
- Creation of Novel Structured Nanocarbons Based on Plasma Technology (第45回真空に関する連合講演会プロシーディングス--2004年10月27日〜29日,大阪)
- Formation of p-n Junction in Double-Walled Carbon Nanotubes Based on Heteromaterial Encapsulation
- Efficient Synthesis of Gold Nanoparticles Using Ion Irradiation in Gas-Liquid Interfacial Plasmas
- Modification of Double-Walled Carbon Nanotubes by Cs Plasma Ion Irradiation
- Double Layer Dynamics in a Collisionless Magnetoplasma
- Stationary Double Layers in a Collisionless Magnetoplasma
- Electrostatic Potentials of Stationary Plasma Flows Along Magnetic Well and Hill
- A Mechanism for Potential-Driven Electrostatic Ion Cyclotron Oscillations in a Plasma
- Probe Measurements in a Negative Ion Plasma
- Plasma Potential Formation Due to Localized Radio-Frequency Electric Fields
- Analysis of Ion Species in Potassium-Fullerene Plasmas
- Electrostatic Ion-Cyclotron Oscillations Induced by an Emissive Disc Plate Floating in a Plasma
- Electron Injections from a Floated Plate into a Collisionless Plasma
- Plasma Particle Drifts Due to Traveling Waves with Cyclotron Frequencies
- Neutralized, Collisionless, Surface Ionized Ion Beam Source
- Optimum Condition for Spatial Ion Cyclotron Resonance in a Multiple Magnetic Mirror Field
- Versatile Control of Carbon Nanotube Semiconducting Properties by DNA Encapsulation Using Electrolyte Plasmas
- Spatial Evolution of Ion Beams Passing through a Multiple Magnetic Mirror Field
- Growth of Single-Walled Carbon Nanotubes from Nonmagnetic Catalysts by Plasma Chemical Vapor Deposition
- Experimental Evidence of m=-1 Helicon Wave Cutoff in Plasmas(Gases, Plasmas and Electric Discharges)
- Harvesting Infrared Solar Energy by Semiconducting Single-Walled Carbon Nanotubes
- Novel Properties of Single-Walled Carbon Nanotubes with Encapsulated Magnetic Atoms
- Encapsulation of Nickel Atom inside Fullerene by Energetic Ion Irradiation
- Freestanding Individual Single-walled Carbon Nanotube Synthesis Based on Plasma Sheath Effects
- Time Evolution of Nucleation and Vertical Growth of Carbon Nanotubes during Plasma-Enhanced Chemical Vapor Deposition
- Liquid-Gas Interfacial Plasmas for Formation of Novel Nanobiomaterials
- High-Beta Axisymmetric Equilibria with Flow in Reduced Single-Fluid and Two-Fluid Models
- Highly Efficient Synthesis of Nitrogen-Atom Endohedral Fullerene by Controlling Plasma Ion Behaviors
- Chemical Modification of Carbon Nanotube Based Bio-Nanosensor by Plasma Activation
- Creation of Nanoparticle--Nanotube Conjugates for Life-Science Application Using Gas--Liquid Interfacial Plasmas
- Reductants in Gold Nanoparticle Synthesis Using Gas-Liquid Interfacial Discharge Plasmas
- Synthesis of Superfine Ethanol-Soluble CoO Nanoparticles via Discharge Plasma in Liquid
- Verification of Polarization Reversal of Electromagnetic Waves with Electron Cyclotron Frequency Controlling Plasma-Structure Formation
- Drift-Wave Instabilities Modified by Parallel and Perpendicular Flow Velocity Shears in Magnetized Plasmas
- Effects of Ion Energy Control on Production of Nitrogen–C60 Compounds by Ion Implantation
- Flow Energy Control of Nitrogen Ions Generated by Electron Cyclotron Resonance
- Atmospheric Pressure Glow-Discharge Plasmas with Gas–Liquid Interface
- Effects of Ion Bombardment on Carbon Nanotube Formation in Strongly Magnetized Glow-Discharge Plasmas
- Growth of Vertically Aligned Carbon Nanotube Bundles using Atmospheric-Pressure Microplasma
- Alkali-Halogen Plasma Generation Using Alkali Salt
- Anisotropic Graphite Erosion in Low-Temperature and High-Density Deuterium Plasma
- Single-Stranded DNA Insertion into Single-Walled Carbon Nanotubes by Ion Irradiation in an Electrolyte Plasma
- Fast Growth of Carbon Nanowalls from Pure Methane using Helicon Plasma-Enhanced Chemical Vapor Deposition
- Measurements of Potential-Driven Electrostatic Ion Cyclotron Oscillations in a Plasma
- Molecular Dynamics Simulation of the Incident Angle Dependence of Reactions between Graphene and Hydrogen Atom
- Erratum: "High-Beta Axisymmetric Equilibria with Flow in Reduced Single-Fluid and Two-Fluid Models" [Plasma Fusion Res. 3, 034 (2008)]
- Formation of C60- Encapsulated Double-Walled Carbon Nanotubes with Novel Electrical Transport Properties Based on Plasma Technology
- Construction of a Gyrokinetic Plasma Simulation Model for Electromagnetic Phenomena
- Analytic Equilibria of High-Beta Tokamaks with Toroidal and Poloidal Flows and Pressure Anisotropy Associated with Parallel Heat Flux
- Modification of Electrical Transport Properties of Single-Walled Carbon Nanotubes Realized by Negative-Ion Irradiation with Electron-Free Pure Alkali–Halogen Plasma