A Shape-Directed Scaling Method for Fundus Image with Maintenance to Blood-Vessel Shapes and Color Reality
スポンサーリンク
概要
- 論文の詳細を見る
When digitized fundus images are used in medicine, important information for clinicians diagnosis should be maintained well after scaling. Conventional scaling methods select the interpolation kernel based on Shannons sampling theorem which is only appropriate for band-limited signals and usually generate image with jaggy noise or blurred blood-vessel shapes that the tortuosity and diameter change of blood vessels which are important information to clinicians diagnosis can not be maintained clearly. To solve these problems, we select the quadratic Fluency sampling function as the interpolation kernel to maintain the color reality of fundus image based on the Fluency information theory. Scaling is then realized by interpolation directed to the blood-vessel shape map of required resolution which is generated from two kinds of Fluency sampling functions. These two kinds of Fluency sampling functions are precedingly utilized to approximate shapes of blood vessels on the original fundus image according to the suggestion of specialists in fundus field. Resulting images by the proposed method show good shape maintenance of blood vessels and have a better quantitative evaluation than the generally recognized best conventional method.
- 社団法人 電気学会の論文
著者
-
亀山 啓輔
筑波大学大学院システム情報工学研究科コンピュータサイエンス専攻
-
亀山 啓輔
筑波大学大学院システム情報工学研究科
-
亀山 啓輔
筑波大学システム情報工学研究科コンピュータサイエンス専攻
-
Mitamura Yoshinori
Graduate School Of Information Science And Technology Hokkaido University
-
Kameyama Keisuke
Graduate School Of Systems And Information Engineering University Of Tsukuba
-
Kameyama Keisuke
Interdisciplinary Graduate School Of Science And Engineering Tokyo Institute Of Technology
-
Kameyama Keisuke
The Authors Are With The Interdisciplinary Graduate School Of Science And Engineering Tokyo Institut
-
Sheng Kai
Graduate School of Systems and Information Engineering, University of Tsukuba
-
Toraichi Kazuo
Graduate School of Systems and Information Engineering, University of Tsukuba
-
Katagishi Kazuki
Graduate School of Systems and Information Engineering, University of Tsukuba
-
Morooka Yasuo
Graduate School of Systems and Information Engineering, University of Tsukuba
-
Ohmiya Yasuhiro
Graduate School of Systems and Information Engineering, University of Tsukuba
-
Mitamura Yoshinori
Graduate School of Engineering, Hokkaido University
関連論文
- B-19-14 ユビキタス・クラウドを記述するための理論的モデルの構築法に関する考察(その1)(B-19.ネットワークソフトウェア,一般講演)
- 画像の内容検索における類似度評価アルゴリズムの利用者フィードバックを用いた最適化(「人工知能的方法論を用いた知的画像処理」)
- フルーエンシ補間によるテレビ映像高精細化処理のハードウェア実装法(画像の処理と符号化)
- Fluency 解析の画像処理への応用 - 新しいデジタル画像変換技術 -
- MR援用PET画像処理における組織分類ニューラルネット
- 1R-3 画像内容検索における利用者の関連性フィードバックを利用した適応的大分類手法(画像検索・画像情報処理,学生セッション,データベースとメディア)
- CQ2010-35 超高速インターネット衛星きずなを用いた遠隔授業における映像・音声品質の評価(一般,映像配信・コミュニケーションを支える品質技術,一般)
- Establishment of in silico systems to predict the effects of genetic polymorphism on the enzymatic activity of cytochrome P450
- 高次モーメントスペクトルカーネルを用いたサポートベクトルマシンによる信号分類
- 衛星きずな(WINDS)を用いた遠隔授業実験(衛星,移動通信におけるアンテナ・伝搬技術,一般)