P-15 Porous pure titanium prepared by sponge replication method for biomedical applications
スポンサーリンク
概要
- 論文の詳細を見る
Porous structure may also provide new bone tissue ingrowth abilities and vascularization. In the present study, highly porous Ti scaffolds were prepared through a sponge replication method. Additionally, the open porosity of the Ti foams sintered at three different sintering temperatures are larger than 74%, suggesting that most pores are interconnected through channels. Moreover, the strength and modulus of the sintered Ti foams conforms to the basic mechanical property requirement of cancellous bones. In this research, the highly porous Ti foams with a bioactive oxide layer were successfully fabricated by single-step sintering in air instead of conventional vacuum atmosphere.
- 一般社団法人日本歯科理工学会の論文
- 2013-03-25
著者
-
Ho Wen-fu
Da-yeh Univ.
-
Wu Shih-ching
Central Taiwan Univ. Of Sci. And Tech.
-
Hsu Hsueh-Chuan
Central Taiwan Univ. of Sci. and Tech.
-
Hsu Shih-Kuang
Central Taiwan Univ. of Sci. and Tech.
-
Wang Peng-Hsiang
Da-Yeh Univ.
関連論文
- Surface characterization and bond strengths between Ti-20Cr-1X alloys and low fusing porcelain
- P-33 Biomedical porous titanium alloys prepared by mechanical alloying and powder sintering
- P-59 Effects of surface treatments on phase transformation of dental zirconia
- P-29 Formation of calcium phosphates on biomedical porous titanium alloys prepared by mechanical alloying and powder sintering
- P-12 Characterization of surface modified zirconia by hydrothermal method
- P-55 Preparation and characteristics of bone-like apatite nanopowder
- P-15 Porous pure titanium prepared by sponge replication method for biomedical applications
- P-14 Chemical treatment and bioactivity of nanotubular anodized Ti alloy
- P-54 Phase transformation of dental porcelain fused to zirconia
- P-31 Evaluation of corrosion behavior and biocompatibility of biomedical Ti-25Nb-xSn alloys
- Effects of surface treatments on phase transformation of dental zirconia
- Biomedical porous titanium alloys prepared by mechanical alloying and powder sintering
- P-50 Microstructure and mechanical properties of Ti-Mo-Cr alloys
- P-51 Bond strengths between Ti-25Nb-xSn alloys and low-fusing porcelain
- P-43 Corrosion behavior and biocompatibility of Ti-10Zr-xMo alloys for biomedical application
- Phase transformation of dental porcelain fused to zirconia
- P-42 Characteristics and microstructure of porous Ti-5Nb-5Mo alloy for biomedical applications
- Evaluation of corrosion behavior and biocompatibility of biomedical Ti-25Nb-xSn alloys
- Formation of calcium phosphates on biomedical porous titanium alloys prepared by mechanical alloying and powder sintering
- P-10 Evaluation of porous Y-TZP scaffold coated with bioglass
- Preparation and characteristics of bone-like apatite nanopowder
- Characterization of surface modified zirconia by hydrothermal method
- Chemical treatment and bioactivity of nanotubular anodized Ti alloy
- Porous pure titanium prepared by sponge replication method for biomedical applications