Physicochemical Characterization of Indomethacin Polymorphs and the Transformation Kinetics in Ethanol
スポンサーリンク
概要
- 論文の詳細を見る
Methods for the preparation of polymorphs of indomethacin (IMC) were studied in order to obtain the pure polymorphs. The physicochemical properties of IMC polymorphs were measured by using X-ray diffraction analysis. infrared (IR) spectroscopy, differential thermal analysis (DTA) and differential scanning calorimetry (DSC), and two polymorphs (α and γ forms) and one benzene solvate (β form) were identified. The pure α form was obtained when distilled water at room temperature was poured into IMC ethanol solution at about 80℃, and the precipitated crystals were filtered off and dried. The pure β and γ forms were obtained by recrystallization from benzene and ethyl ether, respectively, at room temperature. The melting points of the α and γ forms were 148 and 154℃, respectively, and their heats of fusion were 7.49±0.27 and 8.64±0.13kcal/mol, respectively, as determined by DSC. A mixture of α and γ forms was obtained by the method previously reported for α form preparation ("recrystallization method"), since the pure α form was transformed to the γ form in ethanol at room temperature. The transformation of α form to γ form in ethanol was analyzed by the kinetic method using 9 kinds of kinetic models. It was concluded that the transformation followed kinetics corresponding to two-dimensional growth of nuclei (Avrami equation), and the activation energy was calculated to be 14.2 kcal/mol from the Arrhenius plot. The solubilities of the α and γ forms in distilled water were 0.87 and 0.69mg/100ml, respectively.
- 社団法人日本薬学会の論文
- 1985-08-25
著者
-
大塚 誠
School of pharmaceutical Sciences, Showa University
-
金庭 延慶
School of pharmaceutical Sciences, Showa University
-
林 哲男
昭和大学薬学部
-
林 哲男
School of Pharmaceutical Sciences, Showa University
-
金庭 延慶
School Of Pharmaceutical Sciences Showa University
関連論文
- The Dehydration Kinetics of Theophylline Monohydrate Powder and Tablet
- A Kinetic Study of the Crystallization Process of Noncrystalline Indomethacin under Isothermal Conditions
- Effect of Environmental Temperature on the Polymorphic Transformation of Phenylbutazone during Grinding
- インドメタシン結晶多形の溶解機構
- Effect of Environmental Temperature on Polymorphic Solid-State Transformation of Indomethacin during Grinding
- Physicochemical Characterization of Indomethacin Polymorphs and the Transformation Kinetics in Ethanol
- Effect of Tabletting on the Degree of Crystallinity and on the Dehydration and Decomposition Points of Cephalexin Crystalline Powder
- Compression Properties of Cephalexin Powder and Physical Properties of the Tablet
- The Interaction between Water and Cephalexin in the Crystalline and Noncrystalline States
- Effects of Grinding on the Physicochemical Properties of Cephalexin Powder
- Effect of Grinding on the Degree of Crystallinity of Cephalexin Powder
- Dehydration of Cephalexin Hydrates
- Hygroscopicity and Solubility of Noncrystalline Cephalexin
- Influence of Particle Size on Physicochemical Properties of Pharmaceutical Powders. V. On Fluidity of Sodium Borate and Boric Acid Powders. (2)
- Influence of Particle Size on Physicochemical Properties of Pharmaceutical Powders. I. On Fluidity of Sodium Borate and Boric Acid Powders. (1).
- Solubilization of Amobarbital by Mechanical Treatment in the Presence of Diluents
- A Decrease in Crystallinity of Amobarbital by Mechanical Treatment in the Presence of the Diluents
- The Effect of Crystal Hardness on Compaction Propensity
- The Effect of Particle Size on the Compaction Properties and Compaction Mechanism of Sulfadimethoxine and Sulfaphenazole
- Preparation of Phenylbutazone Polymorphs and Their Transformation in Solution
- Variation in the Molecular Weight Distribution of Polyvinylpyrrolidone by Ball-Milling
- Induction Period for a Decrease in Molecular Weight of Polyvinylpyrrolidone by Ball-Milling in Various Kinds of Atmosphere in the Presence of Organic and Inorganic Powders
- Solubilization of Water-Insoluble Organic Powders by Ball-Milling in the Presence of Polyvinylpyrrolidone
- Influence of Molecular Weight of Polyethylene Glycol on Interaction between Polyethylene Glycol and Iodine
- Influence of Operational Variables on Vibro-milling of Silica Sands
- Influence of Addition of Organic and Inorganic Powders on Degradation of Polyvinylprrolidone by Ball-Milling in Air
- Influence of Operational Variables on Ball-Milling of Sulfadimethoxine and White Alundum
- Influence of Physicochemical Properties on Ball-Milling of Pharmaceutical Powders
- Influence of Particle Size on Physicochemical Properties of Pharmaceutical Powders. IX. Fluidity of Binary Mixtures of Potato Starch
- Influence of Particle Size on Physicochemical Properties of Pharmaceutical Powders. VII. Fluidity and Packing Property of Binary Mixtures
- Influence of Particle Size on Physicochemical Properties of Pharmaceutical Powders. IV. On Packing of Pharmaceutical Powders. (2)
- Influence of Particle Size on Physicochemical Properties of Pharmaceutical Powders. II. On Packing of Sodium Borate and Boric Acid Powders.
- Dissolution of Slightly Soluble Drugs. VI. Effect of Particle Size of Sulfadimethoxine on the Oral Bioavailability
- Effect of Fasting on the Elimination of Barbital and Phenobarbital in Rabbits
- Interaction between Iodine and Polyvinylpyrrolidone or α-Pyrrolidone
- Complexation of Chlorpromazine with Adenosine and Its Phosphates
- Effect of Water on Rate of Charge-Transfer Reaction of Aniline with Chloranil
- Effect of Water on Charge-Transfer Complexations
- Solvent Effects on π-π Charge-Transfer Complexations
- Spectral Changes of Various Dyes by Bovine Serum Albumin and by Organic Solvents
- Spectroscopic Studies on Molecular Interactions. VI. Mechanism of Metachromasy of 2-(4'-Hydroxyphenylazo) benzoic Acid by Serum Albumin
- Spectroscopic Studies on Molecular Interactions. V. Charge-Transfer Property and Enzymatic Acetylation of Aniline Derivatives
- Adsorption of Solute from the Solutions. IV. Adsorption of Benzoic Acids on Graphite
- Adsorption of Solute from the Solutions. V. Adsorption Rate of Cyanocobalamin on Talc
- Spectroscopic Studies on Molecular Interactions. IV. Charge-Transfer Properties and Antibacterial Activity of Sulfonamides
- Spectroscopic Studies on Molecular Interactions. III. Improvement of the Benesi-Hildebrand Method for the Determination of Equilibrium Constants
- Spectroscopic Studies on Molecular Interactions. II. Complexation between Polyvinylpyrrolidone and Iodine
- Spectroscopic Studies on Molecular Interactions. I. Complexations between Caffeine and Benzoic Acids
- Adsorption of Solute from the Solutions. III. Repression of Adsorption of Cyanocobalamin on Talc by Polyvinylpyrrolidone
- Adsorption of Solute from the Solutions. II. Competitive Adsorption of Cyanocobalamin with Pyridoxine and Thiamine on Talc
- Dissolution of slightly Soluble Drugs. V. Effect of Particle Size on Gastrointestinal Drug Absorption and Its Relation to Solubility
- Dissolution of slightly Soluble Drugs. IV. Effect of Particle Size of Sulfonamides on in Vitro Dissolution Rate and in Vivo Absorption Rate, and Their Relation to Solubility
- Dissolution of slightly Soluble Drugs. III. Surface Condition of Powder Particles and Their Initial Dissolution Behavior
- Dissolution of Slightly Soluble Drugs. II. Effect of Particle Size on Dissolution Behavior in Sodium Lauryl Sulfate Solutions
- Dissolution of slightly Soluble Drugs. I. Influence of Particle Size on Dissolution Behavior