Analysis of a Multivibrator-Based Simple CMOS Chaos Generator (Special Section on Nonlinear Theory and Its Applications)
スポンサーリンク
概要
- 論文の詳細を見る
This paper analyzes the operations of a CMOS multivibrator-based chaos generator. The equations representing the shape of the first return map are formulated and confirmed by comparison with experimental results, and the design principles are obtained.
- 社団法人電子情報通信学会の論文
- 1999-09-25
著者
-
Hoh Koichiro
School Of Frontier Sciences The University Of Tokyo:crest Japan Science And Technology Corporation
-
Fujishima Minoru
School Of Engineering The University Of Tokyo
-
Fujishima M
School Of Frontier Sciences The University Of Tokyo
-
Tsujita T
Department Of Information And Communication Engineering Graduate School Of Engineering The Universit
-
TSUJITA Tatsuo
School of Engineering, the University of Tokyo
-
AIHARA Yuichiro
School of Engineering, the University of Tokyo
-
Fujishima M
Department Of Frontier Informatics Graduate School Of Frontier Sciences The University Of Tokyo
-
Aihara Yuichiro
School Of Engineering The University Of Tokyo
関連論文
- C-12-13 4.8GHz CMOSパルス注入同期型周波数逓信器(C-12. 集積回路BC(クロック・発振器),一般セッション)
- 7%のチューニングレンジを持つ76GHzCMOS電圧制御発振器(アナログ・デジアナ・センサ,通信用LSI)
- C-12-21 58.8/39.2GHzデュアルモードCMOS周波数分周器(C-12.集積回路C(アナログ),一般講演)
- 7%のチューニングレンジを持つ76GHz CMOS電圧制御発振器 (情報センシング)
- C-12-15 CMOSミリ波低雑音増幅器の設計フロー(増幅器,C-12.集積回路,一般セッション)
- C-12-14 CMOS注入同期用直交出力電圧制御発振器(C-12. 集積回路BC(クロック・発振器),一般セッション)
- 60GHz CMOSパルス発生器(学生・若手研究会)
- C-12-61 60GHz高利得電流駆動受動CMOSミキサ(C-12. 集積回路AC(RFモデリング),一般セッション)
- CT-1-3 ミリ波CMOS(CT-1.CMOSを越える革新デバイスの現状と展望,チュートリアル講演,ソサイエティ企画)
- C-12-22 60GHz CMOSパルス発生器(C-12.集積回路C(アナログ),一般講演)
- 3.3mW 11-times CMOS frequency multiplier (集積回路)
- 4.8GHz CMOS Frequency Multiplier Using Subharmonic Pulse-Injection Locking for Spurious Suppression
- A Scalable Model of Shielded Capacitors Using Mirror Image Effects(Recent Technologies for Microwave and Millimeter-wave Passive Devices)
- Charging and Retention Times in Silicon-Floating-Dot-Single-Electron Memory
- A Simple Model of a Single-Electron Floating Dot Memory for Circuit Simulation
- Single-Electron Circuit Simulation (Special Issue on Technology Challenges for Single Electron Devices)
- Proposal of a Schottky-Barrier SET Aiming at a Future Integrated Device (Special Issue on New Concept Device and Novel Architecture LSIs)
- Correlated Electron-Hole Transport in Capacitively-Coupled One-Dimensional Tunnel Junction Arrays ( Quantum Dot Structures)
- Cotunneling-Tolerant Single-Electron Logic
- An Integrated Low-Power CMOS Up-Conversion Mixer Using New Stacked Marchand Baluns(Analog and Communications,Low-Power, High-Speed LSIs and Related Technologies)
- Recent trends and future prospective on millimeter-wave CMOS circuits
- A Compactly Integrated Random-Signal Source Using Chaos Multivibrator
- Analysis of a Multivibrator-Based Simple CMOS Chaos Generator (Special Section on Nonlinear Theory and Its Applications)
- Single-Electron Transistor in Silicon-on-Insulator with Schottky-Contact Tunnel Barriers ( Quantum Dot Structures)
- Fractally-Structured CMOS Processor for Quantum-Circuit Emulation
- A Programmable SIMD Processor for Universal Quantum-Circuit Simulator
- High-Attenuation Power Line for Wideband Decoupling
- On-Chip Asymmetric Coaxial Waveguide Structure for Chip Area Reduction
- C-2-20 CMOS Variable Gain Amplifier using Gain-Boosting Resonator
- Large-Scale Quantum Computing Emulation Based on Unitary Macro-Operations
- Characterization of High Q Transmission Line Structure for Advanced CMOS Processes(Passive Circuits/Components,Emerging Microwave Techniques)
- Device Modeling Techniques for High-Frequency Circuits Design Using Bond-Based Design at over 100GHz
- Through-Only De-embedding for On-Chip Symmetric Devices
- Prospective Silicon Applications and Technologies in 2025
- Chip Multiprocessor Based on Dual Instruction Multiple Data Architecture
- C-12-70 バックゲート電圧掃引による周波数チューニングにより出力パワー変動を抑制した118GHz CMOS VCO(C-12.集積回路,一般セッション)
- Analysis of On-Chip Asymmetric Coaxial Waveguide Structure for Chip Area Reduction
- Charging and Retention Times in Silicon-Floating-Dot-Single-Electron Memory