Some Remarks on High Temperature Expansion for a Certain n=0 System
スポンサーリンク
概要
- 論文の詳細を見る
The purpose of this paper is to discuss an asymptotic behavior of high temperature expansion of free energy of n-vector model with 2l dummy components in the limit n→0. In doing so, the application of saddle point method is essential so that the present paper begins with some notes on this method. On the basis of these notes, the logarithm of partition function is transformed into a form which is suitable for sidcussing high temperature expansion. As a working example, Husimi-Temperley interaction is dealt with.
- 理論物理学刊行会の論文
- 1987-07-25
著者
-
Abe Ryuzo
Department Of Pure And Applied Sciences University Of Tokyo
-
Abe Ryuzo
Department Of Emergency And Critical Care Medicine Chiba University Graduate School Of Medicine
-
ABE Ryuzo
Department of Pure and Applied Sciences College of Arts and Sciences, University of Tokyo
関連論文
- Importance of Effective Countermeasure against Hypercytokinemia for Successful Application of Surviving Sepsis Campaign (SSC) Guidelines
- 29p-WG-8 物理教材のネットワーク化のサーバー構成
- 29p-WG-7 物理教材のネットワーク化
- 大学初年級物理教育のモジュール化 : 日本物理学会第51回年会物理教育分科(本学会共催)シンポジウム報告(学会報告)
- ワーキンググループの報告 : 諸外国の大学における基礎物理教育の実情(大学における物理の基礎教育)
- 物理教育の外国事情 : アスペン会議の表裏話(大学における物理の基礎教育)
- 英国 Open Universityの教育システム
- 物理教育の危機と大学入試(学会報告)
- 時間反転と不可逆性 (特集 時間とは何か--時間が生んだ世界観とパラダイム)
- 力って何だろう (特集 力〈ちから〉重力から核力まで)
- 高橋 康, 多量子問題から場の量子論へ, 講談社, 東京, 1997, viii+148p., 21×14.5cm, 2,781円 (物理のたねあかし1) [学部・大学院向]
- 統計力学における Green 関数
- 左脳・右脳と物理学
- ワーキンググループの報告 : 物理の大学入試問題の改善の試み : 物理の大学入試問題の改善のための試行テスト(大学における物理の基礎教育)
- Relation between Moments and Cumulants with an Application to n=0 System : Condensed Matter and Statistical Physics
- アジア各国の物理教育と日本の物理教育
- 回転座標系における質点の運動方程式
- 富士会議からえられた大きな収穫(第2回日中米物理教育国際会議に参加して,日・中・米物理教育国際会議報告)
- Zeros of Partition Function and High Temperature Expansion for the Two-Dimensional Ising Models : Condensed Matter and Statistical Physics
- Critical Compressibility Factor of Two-Dimensional Lattice Gas : Kagome and Diced Lattices : Condensed Matter and Statistical Physics
- 出題者としての立場から(高校物理教育と大学入試問題)
- Dynamics of the Ising Model near the Transition Point. II
- Note on the Cluster Expansion Theory of Classical Fluids : Watermelon Approximation
- Equation for Pair Correlation Function of n-Vector Model : Condensed Matter and Statistical Physics
- Equation for Pair Correlation Function of n-Vector Model with n=0
- Quantum Effect, Critical Dynamics and One-Particle Excitation in 1/n Expansion. II
- d'-Dimensional Defect in d-Dimensional Lattice : Nonuniversal Critical Exponents for Long-Range Interactions in the Limit n→∞ : Condensed Matter and Statistical Physics
- Some Remarks on Perturbation Theory and Phase Transition with an Application to Anisotropic Ising Model
- Two-Dimensional Defect in Three-Dimensional Lattice : Local Critical Exponents η',β' and ν' in the Limit n→∞
- Higher-Order Calculations for Weakly Random System in 1/n Expansion
- Diagrammatic Expansion in Condensed Matter Physics
- 1/n Expansion for Weakly Random System with Impurity Correlation
- Critical Compressibility Factor of Two-Dimensional Lattice Gas : General and Mathematical Physics
- d'-Dimensional Defect in d-Dimensional Lattice.I : Nonuniversal Local Critical Exponent in the Limit n→∞
- Renormalized Field Theory of Quenched System under Gaussian Random Fields Conjugate to Anisotropic Spin Fields
- d'-Dimensional Defect in d-Dimensional Lattice.II : Local Exponents β',γ' and ν' in the Limit n→∞
- Quantum Effect, Critical Dynamics and One-Particle Excitation in 1/n Expansion. I
- Ground State Energy of Bose Particle System
- Some Remarks on High Temperature Expansion for a Certain n=0 System
- 1/n Expansion up to Order 1/n^2. I : Equation of State and Correlation Function
- Dynamics of the Ising Model near the Transition Point
- Scaling Function for Equation of State in 1/n and ε Expansions
- Higher Order Calculations for d-Dimensional Lattice with d'-Dimensional Defect
- Some Remarks on Critical Phenomena of Fluid Metals
- High Temperature Expansion for the Ising Model on the Dual Penrose Lattice
- Two-Dimensional Defect in Three-Dimensional Lattice : Local Critical Exponent η' Up to λ^3 in the Limit n→∞
- 1/n Expansion for Weakly Random System
- Scaling Function for Critical Scattering in 1/n Expansion : Numerical Results for Three-Dimension
- Critical Exponent η up to 1/n^2 for the Three-Dimensional System with Short-Range Interaction
- Crossover Exponent of the Spin Anisotropic n-Vector Model with Short-Range Interaction in 1/n Expansion
- Principle of Corresponding State for Fluid Metals
- An Improvement of the Feynman Action in the Theory of Polaron. II
- Note on ε Expansion for Critical Amplitude Ratio R_x
- An Improvement of the Feynman Action in the Theory of Polaron. I
- Note on Scaling Function for Critical Scattering in 1/n Expansion
- Quantum-Mechanical Many-Body Problem with Hard-Sphere Interaction
- A Few Layered n-Vector Model in the Limit n→∞
- Consistency for a Critical Amplitude Ratio R_χ in l/n and ε Expansions
- Breakdown of Some Scaling Law Relations in 1/n Expansion
- Study of Specific Heat below T_c in 1/n Expansion
- Critical Behavior of Annealed Random Spin System at n=-2
- Critical Exponent of the Ising Model in the High Density Limit. II
- Gaussian Random Bond Problem for Annealed System in 1/n Expansion
- Critical Exponent of the Ising Model in the High Density Limit
- Quantum Mechanics of Strongly Interacting Particles with an Application to Lennard-Jones Potential
- Singularity of Specific Heat in the Second Order Phase Transition
- Note on the Critical Behavior of Ising Ferromagnets
- Equation of State in l/n Expansion : n-Vector Model in the Presence of Magnetic Field
- d'-Dimensional Defect in d-Dimensional Lattice. III : Perpendicular Correlations in the Limit n→∞
- Modification of 1/n Expansion in Critical Phenomena
- Critical Exponent Induced by Impurity Effect
- Some Remarks on the n=0 Problem in Critical Phenomena
- Expansion of a Critical Exponent in Inverse Powers of Spin Dimensionality