Modification of 1/n Expansion in Critical Phenomena
スポンサーリンク
概要
- 論文の詳細を見る
If a function g(n) behaves as g(n)→n in the limit n→∞, formulas in 1/n expansion are formally converted into expansions in powers of 1/g(n). A criterion for the possibility of this modefication is discussed, being referred to the existence of saddle points. It is shown that an expansion parameter 1/(n+m) or 2/[(n+m)+√<(n+m)^2-4B>] is allowed, whereas (n+C)/(n^2+An+B) is not allowed in general. As an application, an interpolation formula which is exact at n=-2 and yields 1/n and 1/n^2 terms in the limit n→∞ is derived in the three-dimensional case. The result for γ thus obtained leads to a fairly good agreement with numerical values, as compared to the original 1/n expansion.
- 一般社団法人日本物理学会の論文
- 1980-09-25
著者
-
Abe Ryuzo
Department Of Emergency And Critical Care Medicine Chiba University Graduate School Of Medicine
-
ABE Ryuzo
Department of Pure and Applied Sciences College of Arts and Sciences, University of Tokyo
関連論文
- Importance of Effective Countermeasure against Hypercytokinemia for Successful Application of Surviving Sepsis Campaign (SSC) Guidelines
- 29p-WG-8 物理教材のネットワーク化のサーバー構成
- 29p-WG-7 物理教材のネットワーク化
- 大学初年級物理教育のモジュール化 : 日本物理学会第51回年会物理教育分科(本学会共催)シンポジウム報告(学会報告)
- ワーキンググループの報告 : 諸外国の大学における基礎物理教育の実情(大学における物理の基礎教育)
- 物理教育の外国事情 : アスペン会議の表裏話(大学における物理の基礎教育)
- 英国 Open Universityの教育システム
- 物理教育の危機と大学入試(学会報告)
- 時間反転と不可逆性 (特集 時間とは何か--時間が生んだ世界観とパラダイム)
- 力って何だろう (特集 力〈ちから〉重力から核力まで)
- 高橋 康, 多量子問題から場の量子論へ, 講談社, 東京, 1997, viii+148p., 21×14.5cm, 2,781円 (物理のたねあかし1) [学部・大学院向]
- 統計力学における Green 関数
- 左脳・右脳と物理学
- ワーキンググループの報告 : 物理の大学入試問題の改善の試み : 物理の大学入試問題の改善のための試行テスト(大学における物理の基礎教育)
- Relation between Moments and Cumulants with an Application to n=0 System : Condensed Matter and Statistical Physics
- アジア各国の物理教育と日本の物理教育
- 回転座標系における質点の運動方程式
- 富士会議からえられた大きな収穫(第2回日中米物理教育国際会議に参加して,日・中・米物理教育国際会議報告)
- Zeros of Partition Function and High Temperature Expansion for the Two-Dimensional Ising Models : Condensed Matter and Statistical Physics
- Critical Compressibility Factor of Two-Dimensional Lattice Gas : Kagome and Diced Lattices : Condensed Matter and Statistical Physics
- 出題者としての立場から(高校物理教育と大学入試問題)
- Dynamics of the Ising Model near the Transition Point. II
- Note on the Cluster Expansion Theory of Classical Fluids : Watermelon Approximation
- Equation for Pair Correlation Function of n-Vector Model : Condensed Matter and Statistical Physics
- Equation for Pair Correlation Function of n-Vector Model with n=0
- Quantum Effect, Critical Dynamics and One-Particle Excitation in 1/n Expansion. II
- d'-Dimensional Defect in d-Dimensional Lattice : Nonuniversal Critical Exponents for Long-Range Interactions in the Limit n→∞ : Condensed Matter and Statistical Physics
- Some Remarks on Perturbation Theory and Phase Transition with an Application to Anisotropic Ising Model
- Two-Dimensional Defect in Three-Dimensional Lattice : Local Critical Exponents η',β' and ν' in the Limit n→∞
- Higher-Order Calculations for Weakly Random System in 1/n Expansion
- Diagrammatic Expansion in Condensed Matter Physics
- 1/n Expansion for Weakly Random System with Impurity Correlation
- Critical Compressibility Factor of Two-Dimensional Lattice Gas : General and Mathematical Physics
- d'-Dimensional Defect in d-Dimensional Lattice.I : Nonuniversal Local Critical Exponent in the Limit n→∞
- Renormalized Field Theory of Quenched System under Gaussian Random Fields Conjugate to Anisotropic Spin Fields
- d'-Dimensional Defect in d-Dimensional Lattice.II : Local Exponents β',γ' and ν' in the Limit n→∞
- Quantum Effect, Critical Dynamics and One-Particle Excitation in 1/n Expansion. I
- Ground State Energy of Bose Particle System
- Some Remarks on High Temperature Expansion for a Certain n=0 System
- 1/n Expansion up to Order 1/n^2. I : Equation of State and Correlation Function
- Dynamics of the Ising Model near the Transition Point
- Scaling Function for Equation of State in 1/n and ε Expansions
- Higher Order Calculations for d-Dimensional Lattice with d'-Dimensional Defect
- Some Remarks on Critical Phenomena of Fluid Metals
- High Temperature Expansion for the Ising Model on the Dual Penrose Lattice
- Two-Dimensional Defect in Three-Dimensional Lattice : Local Critical Exponent η' Up to λ^3 in the Limit n→∞
- 1/n Expansion for Weakly Random System
- Scaling Function for Critical Scattering in 1/n Expansion : Numerical Results for Three-Dimension
- Critical Exponent η up to 1/n^2 for the Three-Dimensional System with Short-Range Interaction
- Crossover Exponent of the Spin Anisotropic n-Vector Model with Short-Range Interaction in 1/n Expansion
- Principle of Corresponding State for Fluid Metals
- An Improvement of the Feynman Action in the Theory of Polaron. II
- Note on ε Expansion for Critical Amplitude Ratio R_x
- An Improvement of the Feynman Action in the Theory of Polaron. I
- Note on Scaling Function for Critical Scattering in 1/n Expansion
- Quantum-Mechanical Many-Body Problem with Hard-Sphere Interaction
- A Few Layered n-Vector Model in the Limit n→∞
- Consistency for a Critical Amplitude Ratio R_χ in l/n and ε Expansions
- Breakdown of Some Scaling Law Relations in 1/n Expansion
- Study of Specific Heat below T_c in 1/n Expansion
- Critical Behavior of Annealed Random Spin System at n=-2
- Critical Exponent of the Ising Model in the High Density Limit. II
- Gaussian Random Bond Problem for Annealed System in 1/n Expansion
- Critical Exponent of the Ising Model in the High Density Limit
- Quantum Mechanics of Strongly Interacting Particles with an Application to Lennard-Jones Potential
- Singularity of Specific Heat in the Second Order Phase Transition
- Note on the Critical Behavior of Ising Ferromagnets
- Equation of State in l/n Expansion : n-Vector Model in the Presence of Magnetic Field
- d'-Dimensional Defect in d-Dimensional Lattice. III : Perpendicular Correlations in the Limit n→∞
- Modification of 1/n Expansion in Critical Phenomena
- Critical Exponent Induced by Impurity Effect
- Some Remarks on the n=0 Problem in Critical Phenomena
- Expansion of a Critical Exponent in Inverse Powers of Spin Dimensionality