Self-Consistent Collective-Coordinate Method for the Large-Amplitude Nuclear Collective Motion
スポンサーリンク
概要
- 論文の詳細を見る
This is the second in a series of papers which intends to develop a new microscopic theory capable by itself to select the "optimum" collective path or, more generally, the "optimum" collective submanifold in the many-particle Hilbert space.The main content of this paper consists of i) a restatement of the basic equations of the theory, derived from the fundamental principle which leads us to the "maximal decoupling" between the collective and intrinsic modes and is called the "invariance principle of the Schrodinger equation", and ii) a proposal of a method of solving the basic equations in an appropriate way for the large-amplitude and highly non-linear collective vibrations about the Hartree-Fock ground state with a sherically symmetric equilibrium.
- 理論物理学刊行会の論文
- 1980-10-25
著者
-
Kuriyama Atsushi
Department Of Physics Kyushu University
-
Kuriyama Atsushi
Department Of Physics Kyoto University
-
SAKATA Fumihiko
Institute for Nuclear Study, University of Tokyo
-
MARUMORI Toshio
Institute of Physics, University of Tsukuba
-
Marumori T
Department Of Physics Science University Of Tokyo
-
Marumori Toshio
Institute For Nuclear Study University Of Tokyo
-
Sakata Fumihiko
Institute For Nuclear Study The University Of Tokyo
-
MASKAWA Toshihide
Institute for Nuclear Study, University of Tokyo
-
Sakata F
Ibaraki Univ. Mito Jpn
-
MASKAWA Toshihide
Research Institute for Fundamental Physics Kyoto University
-
Maskawa Toshihide
Institute For Nuclear Study University Of Tokyo
-
MARUMORI Toshio
Institute of Physics, University of Tokyo:Institute for Nuclear Study, University of Tokyo
関連論文
- Breaking of Separability Condition for Dynamical Collective Subspace : Onset of Quantum Chaos in Large-Amplitude Collective Motion : Nuclear Phusics
- Concept of a Collective Subspace Associated with the Invariance Principle of the Schrodinger Equation:A Microscopic Theory of the Large Amplitude Collective Motion of Soft Nuclei
- Preface
- Time-Dependent Hartree-Fock and Functional Approaches. I : A Schematic Model
- Positive Definite Mass Parameter for Large Amplitude Monopole Motion and Non-Adiabatic Effect
- A Remark on Time-Dependent Hartree-Fock and Functional Approaches
- Chapter 7. Coupling between Collective and Intrinsic Modes of Excitation : Part IV. A Next Subject
- Chapter 5. Microscopic Structure of Breaking and Persistency of "Phonon-plus-Odd-Quasi-Particle Picture" : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 4. Persistency of AC State-Like Structure in Collective Excitations : Odd-Mass Mo, Ru, I, Cs and La Isotopes : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 3. Structure of the Anomalous Coupling States with Spin I=(j-1) : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 2. Theory of Intrinsic Modes of Excitation in Odd-Mass Nuclei : Part II. General Formulation of Theory
- Chapter 1. Intrinsic and Collective Degrees of Freedom in Quasi-Spin Space : Part II. General Formulation of Theory
- Part I. Introduction
- Microscopic Structure of a New Type of Collective Excitation in Odd-Mass Mo, Ru, I, Cs and La Isotopes
- Theory of Collective Excitations in Spherical Odd-Mass Nuclei. IV : Formulation in the General Many-j-Shell Model
- Theory of Collective Excitations in Spherical Odd-Mass Nuclei. II : Structure of the Anomalous Coupling States with Spin I = (j-1)
- Theory of Collective Excitations in Spherical Odd-Mass Nuclei. I : Basic Ideas and Concept of Dressed Three-Quasi-Particle Modes
- Equations of Motion for the System of Interest under Time-Dependent Environment(Nuclear Physics)
- The Influence of the Pairing Degrees of Freedom on the Collective Excited States : Schematic Analysis
- A Possible Microscopic Description of Nuclear Collective Rotation in Band-Crossing Region:Occurrence Mechanism of s-Band
- Work with Maskawa on Microscopic Theory of Nuclear Collective Motion(Commemorating the Nobel Prize Awarded to M. Kobayashi and T. Maskawa)
- Chapter I Formation of the Viewpoint, Alpha-Like Four-Body Correlations and Molecular Aspects in Nuclei
- Bifurcation Structure of Eigenstates and Periodic Trajectories in TDHF Phase Space : Weak Nonlinearity Case in SU(3) Model : Nuclear Physics
- A Numerical Study on the Structure Change of Collective Motions
- New Algorithm for Hartree-Fock Variational Equation : Nuclear Physics
- Quantum Nonlinear Resonance : Nuclear Physics
- Microscopic Description of Nuclear Collective Rotation by Means of the Self-Consistent Collective Coordinate Method : Occurrence Mechanism of Collective Rotation : Nuclear Physics
- Extraction of Dynamical Collective Subspace for Large-Amplitude Collective Motion : Application to Simple Solvable Model : Nuclear Physics
- Optimum Collective Submanifold in Resonant Cases by the Self-Consistent Collective-Coordinate Method for Large-Amplitude Collective Motion
- Collective, Dissipative and Stochastic Motions in the TDHF Theory : Nuclear Physics
- Concept of Dynamical Collective Submanifold for Large-Amplitude Collective Motion in the TDHF Theory : Nuclear Physics
- Intrinsic Excitation Modes Compatible with Large-Amplitude Collective Motion in the TDHF Theory : Nuclear Physics
- Applicability of the Concept of "Optimal" Collective Submanifold Determined by the Self-Consistent Collective-Coordinate Method : Long-Time Behavior of Trajectories on "Optimal" Collective Submanifold : Nuclear Physics
- Geometry of the Self-Consistent Collective-Coordinate Method for the Large-Amplitude Collective Motion : Stability Condition of Maximally-Decoupled Collective Submanifold
- Maximally-Decoupled Collective Submanifold in a Simple Solvable Model
- An Attempt toward Quantum Theory of "Maximally-Decoupled"Collective Motion
- Quantum Theory of Collective Motion : Quantized Self-Consistent Collective-Coordinate Method for the Large-Amplitude Nuclear Collective Motion
- Self-Consistent Collective-Coordinate Method for the Large-Amplitude Nuclear Collective Motion
- The Problem of P^+=0 Mode in the Null-Plane Field Theory and Dirac's Method of Quantization
- Deuteron Clustering in Nuclear Matter
- A Microscopic Theory of Collective and Independent-Particle Motions : Time-Dependent Hartree-Fock Method and Its Extension
- Four-Body Correlation in Nuclear Matter
- Utility of Dirac Quantization of Classical System Involving Both Collective and Independent-Particle Degrees of Freedom : A Schematic Model
- Collective Subspace and Canonical System with Constraints
- Binding Energy of Nuclear Matter by the Hole Line Expansion Method. I
- Number-Constrained Canonical Equation for Large Amplitude Pairing Motion and Time-Dependent Hartree-Fock Method
- The Theory of the Structure of Elementary Particles
- A Note on Pairing Vibrational Motion
- A Microscopic Theory of the So-Called "Two-Phonon" States in Even-Even Nuclei. II : Formulation
- Chapter 2 Outline of the Mode-Mode Coupling Theory
- Chapter 1 Present Status of the Microscopic Study of Low-Lying Collective States in Spherical and Transitional Nuclei
- A New Method for Microscopic Description of the So-Called "Many-Phonon" States in Spherical Even-Even Nuclei. I
- Structure of the Anomalous 0^ Excited States in Spherical Even-Even Nuclei with N or Z≈ 40
- In What Sense Does the Phonon Picture Persist in Spherical Even-Even Nuclei?
- Chapter VI Many-Body Theoretical Description of Alpha-Like Four-Body Correlations
- Chapter 5 Dynamical Interplay between Pairing and Quadrupole Correlations in Odd-Mass Nuclei
- Chapter 4 Dynamical Interplay between Pairing and Quadrupole Correlations : Anharmonicity in the So-Called Two-Phonon Triplet States in Medium-Heavy Nuclei
- Chapter 3 A New Microscopic Method for Describing the Elementary Modes of Excitation in the Intrinsic Subspace : Dressed n-Quasiparticle Modes and Multi-Phonon Excitation
- Correlation Analysis of Quantum Fluctuations and Repulsion Effects of Classical Dynamics in SU(3) model(Nuclear Physics)
- Effects of Correlation in the Core on the Motion of Outer Two Nucleons
- Dissipation Mechanism of the Large-Amplitude Collective Motion : Dynamical Evolution of a Collective Bundle of Trajectories in the TDHF Phase Space for a Simple Soluble Model : Nuclear Physics
- On the Foundation of the Unified Nuclear Model, I
- Chapter 6. Comparison between Results with the P+QQ Force and with More Complex Residual Force : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- On the Universal Fermi Interaction
- On the Conservation of Heavy Particles
- Nonlinear σ Models on Symmetric Spaces and Large N Limit
- Structure of the Gauge Transformation Group in the Square Integrable Space and Gribov's Ambiguity in the Coulomb Gauge
- Non-Linear Realization in Supersymmetric Theories : Particles and Fields
- Spontaneous Breaking of Chiral Symmetry in a Vector-Gluon Model
- Non-Linear Realization in Supersymmetric Theories. II : Particles and Fields
- New Bound for Single and Double Diffraction Cross Sections in Identical Particle Collisions
- Bag Theory with the Dirichlet Boundary Conditions and Spontaneous Symmetry Breakdown
- Singular Lagrangian an the Dirac-Feddeev Method : Existence Theorems of constraints in 'Standard Form'
- Spontaneous Breaking of Chiral Symmetry in a Vector-Gluon Model. II
- How Dense Are the Coulomb Gauge Fixing Degeneracies? : Geometrical Formulation of the Coulomb Gauge
- On the Nuclear Saturation
- Boson Expansion for Many-Fermion System as a Canonical Theory with Constraints. I
- A Semi-Microscopic Derivation of Coupling between Rotational and Intrinsic Motions. II
- An Extension of Time-Dependent Hartree-Fock Theory Including Grassmann Variables. I : Basic Formulation in the Framework of Dirac's Canonical Theory with Constraints : Nuclear Physics
- A Note on Specification of Collective Path
- A Microscopic Theory of Collective and Independent-Particle Motions
- An Extension of Time-Dependent Hartree-Fock Theory Including Grassmann Variables. II : Canonical Invariance and Specification of Coordinate System : Nuclear Physics
- Quantum Theory of Dynamical Collective Subspace for Large-Amplitude Collective Motion : Nuclear Physics
- A Classical Theory of Pairing Rotation and Intrinisic Degrees of Freedom : A Canonical Form with Constraints
- A Canonical Coordinate System Suitable for Adiabatic Treatment of Collective Motion : An Illustrative Model
- A Possible Canonical Theory for Description of Pairing Correlation : Comparison with the BCS Plus RPA Approach
- A Quantal Theory of Pairing Rotation, Pairing Vibrations and Independent-Particle Motions
- A Microscopic Theory of Large Amplitude Nuclear Collective Motion
- Boson Expansion for Many-Fermion System as a Canonical Theory with Constraints. II
- On the Relation between Hill-Wheeler's and Bohr-Mottelson's Descriptions of the Nuclear Collective Model
- A Semi-Microscopic Derivation of Coupling between Rotational and Intrinsic Motions. I
- On the "Optical Method" for the Scattering of High Energy Particles by Complex Nuclei
- Present Status of the Microscopic Study of Low-Lying Collective States in Spherical and Transitional Nuclei (Microscopic Study of Low-Lying Collective States in Spherical and Transitional Nuclei--Dynamical Interplay between Pairing and Quadrupole Modes)
- Bifurcation Structure of Eigenstates and Periodic Trajectories in TDHF Phase Space : Weak Nonlinearity Case in SU(3) Model : Nuclear Physics
- A Microscopic Theory of Large Amplitude Nuclear Collective Motion
- An Approximate Solution of Equation of Collective Path and Random Phase Approximation