New Algorithm for Hartree-Fock Variational Equation : Nuclear Physics
スポンサーリンク
概要
- 論文の詳細を見る
Aiming at microscopically understanding the shape-coexistence phenomena, a new algorithm for obtaining many self-consistent Hartree-Fock states is developed. In contrast with the conventional numerical method of the constrained Hartree-Fock equation, which gives the most energetically favorable state under a given constrained condition, it can find many high-lying Hartree-Fock states as well as many continuous constrained Hartree-Fock solutions by dictating their configurations through some reference state. Numerical calculation is performed by using the Skyrme III.
- 理論物理学刊行会の論文
- 1994-12-25
著者
-
HASHIMOTO Yukio
Institute of Physics, University of Tsukuba
-
SAKATA Fumihiko
Institute for Nuclear Study, University of Tokyo
-
Sakata Fumihiko
Department Of Mathematical Sciences Ibaraki University
-
Sakata Fumihiko
Institute For Nuclear Study The University Of Tokyo
-
Hashimoto Yukio
Institute Of Physics University Of Tsukuba
-
Sakata F
Ibaraki Univ. Mito Jpn
-
IWASAWA Kazuo
Institute of Physics,University of Tsukuba
-
TERASAKI Jun
Institute for Nuclear Study, University of Tokyo
-
Iwasawa Kazuo
Institute For Nuclear Study University Of Tokyo
-
Terasaki Jun
Institute For Nuclear Study University Of Tokyo
-
IWASAWA Kazuo
Institute for Nuclear Study, University of Tokyo
-
TERASAKI Jun
Department of Physics, University of Milan:INFN Sezione di Milano:(Present address)Physics Division, Oak Ridge National Laboratory
-
HASHIMOTO Yukio
Institute for Nuclear Study, University of Tokyo
-
HASHIMOTO Yukio
Institute of Physics,Uniersity of Tsukuba
関連論文
- 実空間におけるRPA方程式の解法(有限量子多体系の励起構造と相関効果-原子核・量子ドット・ボース凝縮・クラスターを中心として-,研究会報告)
- 実空間における RPA 方程式の解法(「有限量子多体系の励起構造と相関効果」-原子核・量子ドット・ボース凝縮・クラスターを中心として-,研究会報告)
- Solving the RPA Eigenvalue Equation in Real-Space(Nuclear Physics)
- Solving the RPA Eigenvalue Equation in Real-Space
- Breaking of Separability Condition for Dynamical Collective Subspace : Onset of Quantum Chaos in Large-Amplitude Collective Motion : Nuclear Phusics
- A Role of the Two-body Collision in the Nuclear Shape Evolution (原子核動力学における散逸と減衰)
- Preface
- Chapter 7. Coupling between Collective and Intrinsic Modes of Excitation : Part IV. A Next Subject
- Chapter 1. Intrinsic and Collective Degrees of Freedom in Quasi-Spin Space : Part II. General Formulation of Theory
- Equations of Motion for the System of Interest under Time-Dependent Environment(Nuclear Physics)
- The Influence of the Pairing Degrees of Freedom on the Collective Excited States : Schematic Analysis
- Projection Operator Method for Collective Tunneling Transitions
- Effect of Particle-Phonon Coupling on Pairing Correlations in Finite Systems : The Atomic Nucleus
- A Possible Microscopic Description of Nuclear Collective Rotation in Band-Crossing Region:Occurrence Mechanism of s-Band
- Work with Maskawa on Microscopic Theory of Nuclear Collective Motion(Commemorating the Nobel Prize Awarded to M. Kobayashi and T. Maskawa)
- Bifurcation Structure of Eigenstates and Periodic Trajectories in TDHF Phase Space : Weak Nonlinearity Case in SU(3) Model : Nuclear Physics
- A Numerical Study on the Structure Change of Collective Motions
- New Algorithm for Hartree-Fock Variational Equation : Nuclear Physics
- Quantum Nonlinear Resonance : Nuclear Physics
- Microscopic Description of Nuclear Collective Rotation by Means of the Self-Consistent Collective Coordinate Method : Occurrence Mechanism of Collective Rotation : Nuclear Physics
- Extraction of Dynamical Collective Subspace for Large-Amplitude Collective Motion : Application to Simple Solvable Model : Nuclear Physics
- Optimum Collective Submanifold in Resonant Cases by the Self-Consistent Collective-Coordinate Method for Large-Amplitude Collective Motion
- Collective, Dissipative and Stochastic Motions in the TDHF Theory : Nuclear Physics
- Concept of Dynamical Collective Submanifold for Large-Amplitude Collective Motion in the TDHF Theory : Nuclear Physics
- Intrinsic Excitation Modes Compatible with Large-Amplitude Collective Motion in the TDHF Theory : Nuclear Physics
- Applicability of the Concept of "Optimal" Collective Submanifold Determined by the Self-Consistent Collective-Coordinate Method : Long-Time Behavior of Trajectories on "Optimal" Collective Submanifold : Nuclear Physics
- Geometry of the Self-Consistent Collective-Coordinate Method for the Large-Amplitude Collective Motion : Stability Condition of Maximally-Decoupled Collective Submanifold
- Maximally-Decoupled Collective Submanifold in a Simple Solvable Model
- An Attempt toward Quantum Theory of "Maximally-Decoupled"Collective Motion
- Quantum Theory of Collective Motion : Quantized Self-Consistent Collective-Coordinate Method for the Large-Amplitude Nuclear Collective Motion
- Self-Consistent Collective-Coordinate Method for the Large-Amplitude Nuclear Collective Motion
- A Step toward Large-Amplitude Description of the Ground Band around Band Crossing
- Investigation on Microscopic Dynamics of Dissipation in Nuclear Collective Motion (原子核動力学における散逸と減衰)
- Nonlinear Dynamics of Nuclear Collective Motion
- Correlation Analysis of Quantum Fluctuations and Repulsion Effects of Classical Dynamics in SU (3) model
- A Microscopic Theory of the So-Called "Two-Phonon" States in Even-Even Nuclei. II : Formulation
- Chapter 2 Outline of the Mode-Mode Coupling Theory
- Chapter 1 Present Status of the Microscopic Study of Low-Lying Collective States in Spherical and Transitional Nuclei
- A New Method for Microscopic Description of the So-Called "Many-Phonon" States in Spherical Even-Even Nuclei. I
- Structure of the Anomalous 0^ Excited States in Spherical Even-Even Nuclei with N or Z≈ 40
- In What Sense Does the Phonon Picture Persist in Spherical Even-Even Nuclei?
- Chapter 5 Dynamical Interplay between Pairing and Quadrupole Correlations in Odd-Mass Nuclei
- Chapter 4 Dynamical Interplay between Pairing and Quadrupole Correlations : Anharmonicity in the So-Called Two-Phonon Triplet States in Medium-Heavy Nuclei
- Chapter 3 A New Microscopic Method for Describing the Elementary Modes of Excitation in the Intrinsic Subspace : Dressed n-Quasiparticle Modes and Multi-Phonon Excitation
- Correlation Analysis of Quantum Fluctuations and Repulsion Effects of Classical Dynamics in SU(3) model(Nuclear Physics)
- Dissipation Mechanism of the Large-Amplitude Collective Motion : Dynamical Evolution of a Collective Bundle of Trajectories in the TDHF Phase Space for a Simple Soluble Model : Nuclear Physics
- Comparison of Strengths of the Quadrupole Pairing Force in the Angular-Momentum Expansion of the Rotational Energy : Nuclear Physics
- Quantum Theory of Dynamical Collective Subspace for Large-Amplitude Collective Motion : Nuclear Physics
- A Systematics of Coupling Structure in the S-Band : Nuclear Physics
- Present Status of the Microscopic Study of Low-Lying Collective States in Spherical and Transitional Nuclei (Microscopic Study of Low-Lying Collective States in Spherical and Transitional Nuclei--Dynamical Interplay between Pairing and Quadrupole Modes)
- Bifurcation Structure of Eigenstates and Periodic Trajectories in TDHF Phase Space : Weak Nonlinearity Case in SU(3) Model : Nuclear Physics