A Microscopic Theory of the So-Called "Two-Phonon" States in Even-Even Nuclei. II : Formulation
スポンサーリンク
概要
- 論文の詳細を見る
It is the main purpose of this paper to develop a clear-cut formulation in constructing the dressed four-quasi-particle modes proposed in a previous paper, part I, within the framework of the quasi-particle-new-Tamm-Dancoff method. As already discussed in part I, the construction of the dressed four-quasi-particle modes accompanies various complications when compared with the case of the conventional dressed two-quasi-particle modes, i. e., the phonons. To avoid the puzzling complications, we explicitly establish a concept of quasi-particle-new-Tamm-Dancoff space which is related inherently to the quasi-particle-new-Tamm-Dancoff method. When the concept is explicitly used, the formulation within the framework of the new-Tamm-Dancoff approximation becomes especially simple.
- 理論物理学刊行会の論文
- 1973-09-25
著者
-
Marumori Toshio
Institute For Nuclear Study University Of Tokyo
-
Sakata Fumihiko
Department Of Physics Kyushu University
-
Sakata Fumihiko
Department Of Mathematical Sciences Ibaraki University
-
Takada Kenjiro
Department Of Physics Kyushu University
-
Takada Kenjiro
Department Of Physics Kuushu University
-
KANESAKI Nobuo
Department of Physics, Kyushu University
-
Kanesaki Nobuo
Department Of Physics Kyushu University
関連論文
- Breaking of Separability Condition for Dynamical Collective Subspace : Onset of Quantum Chaos in Large-Amplitude Collective Motion : Nuclear Phusics
- A Role of the Two-body Collision in the Nuclear Shape Evolution (原子核動力学における散逸と減衰)
- Concept of a Collective Subspace Associated with the Invariance Principle of the Schrodinger Equation:A Microscopic Theory of the Large Amplitude Collective Motion of Soft Nuclei
- Chapter 7. Coupling between Collective and Intrinsic Modes of Excitation : Part IV. A Next Subject
- Chapter 5. Microscopic Structure of Breaking and Persistency of "Phonon-plus-Odd-Quasi-Particle Picture" : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 4. Persistency of AC State-Like Structure in Collective Excitations : Odd-Mass Mo, Ru, I, Cs and La Isotopes : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 3. Structure of the Anomalous Coupling States with Spin I=(j-1) : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 2. Theory of Intrinsic Modes of Excitation in Odd-Mass Nuclei : Part II. General Formulation of Theory
- Chapter 1. Intrinsic and Collective Degrees of Freedom in Quasi-Spin Space : Part II. General Formulation of Theory
- Part I. Introduction
- Microscopic Structure of a New Type of Collective Excitation in Odd-Mass Mo, Ru, I, Cs and La Isotopes
- Theory of Collective Excitations in Spherical Odd-Mass Nuclei. IV : Formulation in the General Many-j-Shell Model
- A Possible Microscopic Description of Nuclear Collective Rotation in Band-Crossing Region:Occurrence Mechanism of s-Band
- Chapter I Formation of the Viewpoint, Alpha-Like Four-Body Correlations and Molecular Aspects in Nuclei
- Bifurcation Structure of Eigenstates and Periodic Trajectories in TDHF Phase Space : Weak Nonlinearity Case in SU(3) Model : Nuclear Physics
- A Numerical Study on the Structure Change of Collective Motions
- New Algorithm for Hartree-Fock Variational Equation : Nuclear Physics
- Quantum Nonlinear Resonance : Nuclear Physics
- Microscopic Description of Nuclear Collective Rotation by Means of the Self-Consistent Collective Coordinate Method : Occurrence Mechanism of Collective Rotation : Nuclear Physics
- Extraction of Dynamical Collective Subspace for Large-Amplitude Collective Motion : Application to Simple Solvable Model : Nuclear Physics
- Optimum Collective Submanifold in Resonant Cases by the Self-Consistent Collective-Coordinate Method for Large-Amplitude Collective Motion
- Collective, Dissipative and Stochastic Motions in the TDHF Theory : Nuclear Physics
- Concept of Dynamical Collective Submanifold for Large-Amplitude Collective Motion in the TDHF Theory : Nuclear Physics
- Intrinsic Excitation Modes Compatible with Large-Amplitude Collective Motion in the TDHF Theory : Nuclear Physics
- Applicability of the Concept of "Optimal" Collective Submanifold Determined by the Self-Consistent Collective-Coordinate Method : Long-Time Behavior of Trajectories on "Optimal" Collective Submanifold : Nuclear Physics
- Geometry of the Self-Consistent Collective-Coordinate Method for the Large-Amplitude Collective Motion : Stability Condition of Maximally-Decoupled Collective Submanifold
- Maximally-Decoupled Collective Submanifold in a Simple Solvable Model
- An Attempt toward Quantum Theory of "Maximally-Decoupled"Collective Motion
- Quantum Theory of Collective Motion : Quantized Self-Consistent Collective-Coordinate Method for the Large-Amplitude Nuclear Collective Motion
- Self-Consistent Collective-Coordinate Method for the Large-Amplitude Nuclear Collective Motion
- Four-Body Correlations in Light Nuclei : The Interaction between a Four-Body Mode and a Single-Hole Mode
- The Theory of the Structure of Elementary Particles
- Investigation on Microscopic Dynamics of Dissipation in Nuclear Collective Motion (原子核動力学における散逸と減衰)
- Nonlinear Dynamics of Nuclear Collective Motion
- Correlation Analysis of Quantum Fluctuations and Repulsion Effects of Classical Dynamics in SU (3) model
- Role of Particle-Hole Interaction in the Four-Particle-Four-Hole States in ^O
- Two-Octupole-Phonon States in ^Gd
- Non-Unitary Realization of the Selfconsistent Collective-Coordinate Method : Nuclear Physics
- A Microscopic Theory of the So-Called "Two-Phonon" States in Even-Even Nuclei. II : Formulation
- Dyson Boson Mapping and Shell-Model Calculations for Even-Even Nuclei(Nuclear Physics)
- Chapter 2 Outline of the Mode-Mode Coupling Theory
- Chapter 1 Present Status of the Microscopic Study of Low-Lying Collective States in Spherical and Transitional Nuclei
- A New Method for Microscopic Description of the So-Called "Many-Phonon" States in Spherical Even-Even Nuclei. I
- Structure of the Anomalous 0^ Excited States in Spherical Even-Even Nuclei with N or Z≈ 40
- In What Sense Does the Phonon Picture Persist in Spherical Even-Even Nuclei?
- Axially Asymmetric Deformation and Its Stability in sd-Shell Nuclei
- Quasiparticle-Shell-Model Calculations of So-Called Two-Phonon States in Cd and Sn Isotopes
- Chapter VI Many-Body Theoretical Description of Alpha-Like Four-Body Correlations
- Nuclear Deformation and Nuclear Force. II
- Chapter 5 Dynamical Interplay between Pairing and Quadrupole Correlations in Odd-Mass Nuclei
- Chapter 4 Dynamical Interplay between Pairing and Quadrupole Correlations : Anharmonicity in the So-Called Two-Phonon Triplet States in Medium-Heavy Nuclei
- Chapter 3 A New Microscopic Method for Describing the Elementary Modes of Excitation in the Intrinsic Subspace : Dressed n-Quasiparticle Modes and Multi-Phonon Excitation
- Dynamical Anharmonicity Effects in Low-Lying Negative-Parity States of Odd-Mass Sn Isotopes
- On the Four-Body Correlations in Light Nuclei : Reduction of the Effective Interaction due to the Pauli Principle
- Non-Unitary Boson Mapping and Its Application to Nuclear Collective Motions
- Correlation Analysis of Quantum Fluctuations and Repulsion Effects of Classical Dynamics in SU(3) model(Nuclear Physics)
- Alpha-Like Spatial Four-Body Correlations in Light Nuclei : Vertically-Truncated-Subspace Shell Model for the Core Plus Four-Particle System
- Dissipation Mechanism of the Large-Amplitude Collective Motion : Dynamical Evolution of a Collective Bundle of Trajectories in the TDHF Phase Space for a Simple Soluble Model : Nuclear Physics
- Test of Validity of the Hermitian Treatment of the Dyson Boson Mapping
- Convergence of Boson Expansion Theory : Nuclear Physics
- A Comment on the New Formulation of a Many-Level Shell Model
- A New Formulation of a Many-Level Shell Model : A Method of Constructing Orthonormal Basis States Analytically
- A Non-Linear Extension of the Quasiparticle Random-Phase Approximation for Description of Nuclear Collective Motions : Application of Sawada's Attached Field Method
- On the Foundation of the Unified Nuclear Model, I
- On the Universal Fermi Interaction
- On the Conservation of Heavy Particles
- On the Nuclear Saturation
- Quantum Theory of Dynamical Collective Subspace for Large-Amplitude Collective Motion : Nuclear Physics
- A Microscopic Theory of Large Amplitude Nuclear Collective Motion
- On the Relation between Hill-Wheeler's and Bohr-Mottelson's Descriptions of the Nuclear Collective Model
- On the "Optical Method" for the Scattering of High Energy Particles by Complex Nuclei
- Convergence of Boson Expansion Theory : Nuclear Physics
- Bifurcation Structure of Eigenstates and Periodic Trajectories in TDHF Phase Space : Weak Nonlinearity Case in SU(3) Model : Nuclear Physics
- A Microscopic Theory of Large Amplitude Nuclear Collective Motion