Optimum Collective Submanifold in Resonant Cases by the Self-Consistent Collective-Coordinate Method for Large-Amplitude Collective Motion
スポンサーリンク
概要
- 論文の詳細を見る
With the purpose of clarifying characteristic difference of the optimum collective submanifolds between in nonresonant and resonant cases, we propose an improved method of solving the basic equations of the self-consistent collective-coordinate (SCC) method, which describes optimum ("maximally-decoupled") large-amplitude collective motion within the time-dependent Hartree-Fock theory. It is shown that, in the resonant cases, there inevitably arise essential coupling terms which break the maximal-decoupling property of the collective motion, so that we have to extend the optimum collective submanifold so as to properly treat the degrees of freedom bringing about the resonances. an illustrative example is given with a simple model Hamiltonian.
- 理論物理学刊行会の論文
- 1987-12-25
著者
-
HASHIMOTO Yukio
Institute of Physics, University of Tsukuba
-
SAKATA Fumihiko
Institute for Nuclear Study, University of Tokyo
-
MARUMORI Toshio
Institute of Physics, University of Tsukuba
-
Marumori T
Department Of Physics Science University Of Tokyo
-
Marumori Toshio
Institute For Nuclear Study University Of Tokyo
-
Sakata Fumihiko
Institute For Nuclear Study The University Of Tokyo
-
Hashimoto Yukio
Institute Of Physics University Of Tsukuba
-
Sakata F
Ibaraki Univ. Mito Jpn
-
HASHIMOTO Yukio
Institute for Nuclear Study, University of Tokyo
関連論文
- 実空間におけるRPA方程式の解法(有限量子多体系の励起構造と相関効果-原子核・量子ドット・ボース凝縮・クラスターを中心として-,研究会報告)
- 実空間における RPA 方程式の解法(「有限量子多体系の励起構造と相関効果」-原子核・量子ドット・ボース凝縮・クラスターを中心として-,研究会報告)
- Solving the RPA Eigenvalue Equation in Real-Space(Nuclear Physics)
- Solving the RPA Eigenvalue Equation in Real-Space
- Breaking of Separability Condition for Dynamical Collective Subspace : Onset of Quantum Chaos in Large-Amplitude Collective Motion : Nuclear Phusics
- Concept of a Collective Subspace Associated with the Invariance Principle of the Schrodinger Equation:A Microscopic Theory of the Large Amplitude Collective Motion of Soft Nuclei
- Preface
- Chapter 7. Coupling between Collective and Intrinsic Modes of Excitation : Part IV. A Next Subject
- Chapter 5. Microscopic Structure of Breaking and Persistency of "Phonon-plus-Odd-Quasi-Particle Picture" : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 4. Persistency of AC State-Like Structure in Collective Excitations : Odd-Mass Mo, Ru, I, Cs and La Isotopes : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei