Preface
スポンサーリンク
概要
- 論文の詳細を見る
- 2001-04-27
著者
関連論文
- Breaking of Separability Condition for Dynamical Collective Subspace : Onset of Quantum Chaos in Large-Amplitude Collective Motion : Nuclear Phusics
- Preface
- Chapter 7. Coupling between Collective and Intrinsic Modes of Excitation : Part IV. A Next Subject
- Chapter 1. Intrinsic and Collective Degrees of Freedom in Quasi-Spin Space : Part II. General Formulation of Theory
- The Influence of the Pairing Degrees of Freedom on the Collective Excited States : Schematic Analysis
- A Possible Microscopic Description of Nuclear Collective Rotation in Band-Crossing Region:Occurrence Mechanism of s-Band
- Bifurcation Structure of Eigenstates and Periodic Trajectories in TDHF Phase Space : Weak Nonlinearity Case in SU(3) Model : Nuclear Physics
- A Numerical Study on the Structure Change of Collective Motions
- New Algorithm for Hartree-Fock Variational Equation : Nuclear Physics
- Quantum Nonlinear Resonance : Nuclear Physics
- Microscopic Description of Nuclear Collective Rotation by Means of the Self-Consistent Collective Coordinate Method : Occurrence Mechanism of Collective Rotation : Nuclear Physics
- Extraction of Dynamical Collective Subspace for Large-Amplitude Collective Motion : Application to Simple Solvable Model : Nuclear Physics
- Optimum Collective Submanifold in Resonant Cases by the Self-Consistent Collective-Coordinate Method for Large-Amplitude Collective Motion
- Collective, Dissipative and Stochastic Motions in the TDHF Theory : Nuclear Physics
- Concept of Dynamical Collective Submanifold for Large-Amplitude Collective Motion in the TDHF Theory : Nuclear Physics
- Intrinsic Excitation Modes Compatible with Large-Amplitude Collective Motion in the TDHF Theory : Nuclear Physics
- Applicability of the Concept of "Optimal" Collective Submanifold Determined by the Self-Consistent Collective-Coordinate Method : Long-Time Behavior of Trajectories on "Optimal" Collective Submanifold : Nuclear Physics
- Geometry of the Self-Consistent Collective-Coordinate Method for the Large-Amplitude Collective Motion : Stability Condition of Maximally-Decoupled Collective Submanifold
- Maximally-Decoupled Collective Submanifold in a Simple Solvable Model
- An Attempt toward Quantum Theory of "Maximally-Decoupled"Collective Motion
- Quantum Theory of Collective Motion : Quantized Self-Consistent Collective-Coordinate Method for the Large-Amplitude Nuclear Collective Motion
- Self-Consistent Collective-Coordinate Method for the Large-Amplitude Nuclear Collective Motion
- Chapter 2 Outline of the Mode-Mode Coupling Theory
- A New Method for Microscopic Description of the So-Called "Many-Phonon" States in Spherical Even-Even Nuclei. I
- Structure of the Anomalous 0^ Excited States in Spherical Even-Even Nuclei with N or Z≈ 40
- In What Sense Does the Phonon Picture Persist in Spherical Even-Even Nuclei?
- Chapter 3 A New Microscopic Method for Describing the Elementary Modes of Excitation in the Intrinsic Subspace : Dressed n-Quasiparticle Modes and Multi-Phonon Excitation
- Correlation Analysis of Quantum Fluctuations and Repulsion Effects of Classical Dynamics in SU(3) model(Nuclear Physics)
- Dissipation Mechanism of the Large-Amplitude Collective Motion : Dynamical Evolution of a Collective Bundle of Trajectories in the TDHF Phase Space for a Simple Soluble Model : Nuclear Physics
- Quantum Theory of Dynamical Collective Subspace for Large-Amplitude Collective Motion : Nuclear Physics
- Present Status of the Microscopic Study of Low-Lying Collective States in Spherical and Transitional Nuclei (Microscopic Study of Low-Lying Collective States in Spherical and Transitional Nuclei--Dynamical Interplay between Pairing and Quadrupole Modes)
- Bifurcation Structure of Eigenstates and Periodic Trajectories in TDHF Phase Space : Weak Nonlinearity Case in SU(3) Model : Nuclear Physics