A Semi-Microscopic Derivation of Coupling between Rotational and Intrinsic Motions. II
スポンサーリンク
概要
- 論文の詳細を見る
An effective representation of physical operators, such as the Hamiltonian and electro-magnetic multipole operators, is given in terms of rotational and intrinsic excitation modes, by the use of "kinematical constraints". It is investigated to what extent the introduced Euler angles and the separation of rotation and intrinsic motions have a physical meaning. The compatibility among various constraints appeared in the method of pair operators is discussed.
- 理論物理学刊行会の論文
- 1977-01-25
著者
関連論文
- Time-Dependent Hartree-Fock and Functional Approaches. I : A Schematic Model
- Positive Definite Mass Parameter for Large Amplitude Monopole Motion and Non-Adiabatic Effect
- A Remark on Time-Dependent Hartree-Fock and Functional Approaches
- Chapter 7. Coupling between Collective and Intrinsic Modes of Excitation : Part IV. A Next Subject
- Chapter 5. Microscopic Structure of Breaking and Persistency of "Phonon-plus-Odd-Quasi-Particle Picture" : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 4. Persistency of AC State-Like Structure in Collective Excitations : Odd-Mass Mo, Ru, I, Cs and La Isotopes : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 3. Structure of the Anomalous Coupling States with Spin I=(j-1) : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 2. Theory of Intrinsic Modes of Excitation in Odd-Mass Nuclei : Part II. General Formulation of Theory
- Chapter 1. Intrinsic and Collective Degrees of Freedom in Quasi-Spin Space : Part II. General Formulation of Theory
- Part I. Introduction
- Microscopic Structure of a New Type of Collective Excitation in Odd-Mass Mo, Ru, I, Cs and La Isotopes
- Theory of Collective Excitations in Spherical Odd-Mass Nuclei. IV : Formulation in the General Many-j-Shell Model
- Theory of Collective Excitations in Spherical Odd-Mass Nuclei. II : Structure of the Anomalous Coupling States with Spin I = (j-1)
- Theory of Collective Excitations in Spherical Odd-Mass Nuclei. I : Basic Ideas and Concept of Dressed Three-Quasi-Particle Modes
- Self-Consistent Collective-Coordinate Method for the Large-Amplitude Nuclear Collective Motion
- Deuteron Clustering in Nuclear Matter
- A Microscopic Theory of Collective and Independent-Particle Motions : Time-Dependent Hartree-Fock Method and Its Extension
- Four-Body Correlation in Nuclear Matter
- Utility of Dirac Quantization of Classical System Involving Both Collective and Independent-Particle Degrees of Freedom : A Schematic Model
- Collective Subspace and Canonical System with Constraints
- Binding Energy of Nuclear Matter by the Hole Line Expansion Method. I
- Number-Constrained Canonical Equation for Large Amplitude Pairing Motion and Time-Dependent Hartree-Fock Method
- A Note on Pairing Vibrational Motion
- Effects of Correlation in the Core on the Motion of Outer Two Nucleons
- Chapter 6. Comparison between Results with the P+QQ Force and with More Complex Residual Force : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Boson Expansion for Many-Fermion System as a Canonical Theory with Constraints. I
- A Semi-Microscopic Derivation of Coupling between Rotational and Intrinsic Motions. II
- An Extension of Time-Dependent Hartree-Fock Theory Including Grassmann Variables. I : Basic Formulation in the Framework of Dirac's Canonical Theory with Constraints : Nuclear Physics
- A Note on Specification of Collective Path
- A Microscopic Theory of Collective and Independent-Particle Motions
- An Extension of Time-Dependent Hartree-Fock Theory Including Grassmann Variables. II : Canonical Invariance and Specification of Coordinate System : Nuclear Physics
- A Classical Theory of Pairing Rotation and Intrinisic Degrees of Freedom : A Canonical Form with Constraints
- A Canonical Coordinate System Suitable for Adiabatic Treatment of Collective Motion : An Illustrative Model
- A Possible Canonical Theory for Description of Pairing Correlation : Comparison with the BCS Plus RPA Approach
- A Quantal Theory of Pairing Rotation, Pairing Vibrations and Independent-Particle Motions
- Boson Expansion for Many-Fermion System as a Canonical Theory with Constraints. II
- A Semi-Microscopic Derivation of Coupling between Rotational and Intrinsic Motions. I
- An Approximate Solution of Equation of Collective Path and Random Phase Approximation