Collective Subspace and Canonical System with Constraints
スポンサーリンク
概要
- 論文の詳細を見る
We develop a formal framework in which the collective subspace describing large amplitude collective motion is specified with certain constraints and its quantization can be performed in a consistent matter. Following the idea of the local harmonic approximation, we introduce certain constraints which determine the collective subspace. Then the collective subspace can be described as a canonical system with constraints and its quantization can be carried out with the aid of Dirac-Faddeev quantization.
- 理論物理学刊行会の論文
- 1980-12-25
著者
-
Kuriyama Atsushi
Department Of Physics Kyushu University
-
Kuriyama Atsushi
Department Of Physics Kyoto University
関連論文
- Time-Dependent Hartree-Fock and Functional Approaches. I : A Schematic Model
- Positive Definite Mass Parameter for Large Amplitude Monopole Motion and Non-Adiabatic Effect
- A Remark on Time-Dependent Hartree-Fock and Functional Approaches
- Chapter 7. Coupling between Collective and Intrinsic Modes of Excitation : Part IV. A Next Subject
- Chapter 5. Microscopic Structure of Breaking and Persistency of "Phonon-plus-Odd-Quasi-Particle Picture" : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 4. Persistency of AC State-Like Structure in Collective Excitations : Odd-Mass Mo, Ru, I, Cs and La Isotopes : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 3. Structure of the Anomalous Coupling States with Spin I=(j-1) : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 2. Theory of Intrinsic Modes of Excitation in Odd-Mass Nuclei : Part II. General Formulation of Theory
- Chapter 1. Intrinsic and Collective Degrees of Freedom in Quasi-Spin Space : Part II. General Formulation of Theory
- Part I. Introduction
- Microscopic Structure of a New Type of Collective Excitation in Odd-Mass Mo, Ru, I, Cs and La Isotopes
- Theory of Collective Excitations in Spherical Odd-Mass Nuclei. IV : Formulation in the General Many-j-Shell Model
- Theory of Collective Excitations in Spherical Odd-Mass Nuclei. II : Structure of the Anomalous Coupling States with Spin I = (j-1)
- Theory of Collective Excitations in Spherical Odd-Mass Nuclei. I : Basic Ideas and Concept of Dressed Three-Quasi-Particle Modes
- Self-Consistent Collective-Coordinate Method for the Large-Amplitude Nuclear Collective Motion
- Deuteron Clustering in Nuclear Matter
- A Microscopic Theory of Collective and Independent-Particle Motions : Time-Dependent Hartree-Fock Method and Its Extension
- Four-Body Correlation in Nuclear Matter
- Utility of Dirac Quantization of Classical System Involving Both Collective and Independent-Particle Degrees of Freedom : A Schematic Model
- Collective Subspace and Canonical System with Constraints
- Binding Energy of Nuclear Matter by the Hole Line Expansion Method. I
- Number-Constrained Canonical Equation for Large Amplitude Pairing Motion and Time-Dependent Hartree-Fock Method
- A Note on Pairing Vibrational Motion
- Effects of Correlation in the Core on the Motion of Outer Two Nucleons
- Chapter 6. Comparison between Results with the P+QQ Force and with More Complex Residual Force : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Boson Expansion for Many-Fermion System as a Canonical Theory with Constraints. I
- A Semi-Microscopic Derivation of Coupling between Rotational and Intrinsic Motions. II
- An Extension of Time-Dependent Hartree-Fock Theory Including Grassmann Variables. I : Basic Formulation in the Framework of Dirac's Canonical Theory with Constraints : Nuclear Physics
- A Note on Specification of Collective Path
- A Microscopic Theory of Collective and Independent-Particle Motions
- An Extension of Time-Dependent Hartree-Fock Theory Including Grassmann Variables. II : Canonical Invariance and Specification of Coordinate System : Nuclear Physics
- A Classical Theory of Pairing Rotation and Intrinisic Degrees of Freedom : A Canonical Form with Constraints
- A Canonical Coordinate System Suitable for Adiabatic Treatment of Collective Motion : An Illustrative Model
- A Possible Canonical Theory for Description of Pairing Correlation : Comparison with the BCS Plus RPA Approach
- A Quantal Theory of Pairing Rotation, Pairing Vibrations and Independent-Particle Motions
- Boson Expansion for Many-Fermion System as a Canonical Theory with Constraints. II
- A Semi-Microscopic Derivation of Coupling between Rotational and Intrinsic Motions. I
- An Approximate Solution of Equation of Collective Path and Random Phase Approximation