離散システムの不変な階層構造を求めて : グラフからマトロイドへ
スポンサーリンク
概要
- 論文の詳細を見る
Hierarchical decompositions of discrete physical/engineering systems are considered by means of graph and matroid theory. First, a graph-theoretic method, called the Dulmage-Mendelsohn (DM-) decomposition, is described. Though the DM-decomposition is unique from the graph-theoretic viewpoint, the resulting hierarchy cannot be regarded as a physically inherent structure since it varies with mathematical descriptions employed. This critical observation leads to a new method based on matroid theory for systems analysis. A class of matrices, layered mixed(LM-)matrices, is introduced as a mathematical tool for describing the combinatorial structure of discrete systems. An LM-matrix has a canonical block-triangular decomposition, called the combinatorial canonical form(CCF) , which reveals the "invariant" hierarchy. The CCF is an extension of the DM-decomposition and can be computed by a fast algorithm.
- 一般社団法人日本応用数理学会の論文
- 1991-09-13
著者
-
室田 一雄
Department Of Mathematical Informatics Graduate School Of Information Science And Technology Univers
-
室田 一雄
東京大学計数工学科
関連論文
- A survey on convergence theorems of the dqds algorithm for computing singular values
- 特異値計算アルゴリズムdqds法の収束定理 (計算科学の基盤技術としての高速アルゴリズムとその周辺)
- 特異値計算アルゴリズムdqds法の理論保証付き超2次収束シフト戦略(理論)
- On Convergence of the dqds and mdLVs Algorithms for Computing Matrix Singular Values(Mathematical Sciences for Large Scale Numerical Simulations)
- Sinc-Gauss Sampling Formula(Mathematical Sciences for Large Scale Numerical Simulations)
- 特異値計算のためのdqds法とmdLVs法の収束性について(理論)
- Gauss核サンプリング公式の複素関数論による誤差評価(理論)
- 連続/離散ハイブリッドM凸関数に関する一考察
- 電気抵抗回路に基づくグラフ上の半教師付き学習機械(テーマセッション,文字認識・文書理解)
- Electric Network Kernel for Support Vector Machines(SVM)