A Molecular Orbital Study on the Zinc-Water-Glu 270 System in Carboxypeptidase A
スポンサーリンク
概要
- 論文の詳細を見る
Many investigations on the reaction mechanism of carboxypeptidase A (CPA) have shown that the zinc ion and Glu 270 in the active site are important in the catalytic reaction with a peptide substrate. X-Ray crystallographic studies of native CPA showed that the zinc ion is coordinated to His 69,Glu 72,His 196,and one water molecule and that the Zn-coordinated water molecule forms a hydrogen bond with Glu 270. The zinc-water-Glu 270 system of native CPA was analyzed by the ab initio SCF-LCAO-MO method. Some ligands of zinc are included in the MO calculations as point fractional charges. The results show that the Zn-coordinated water molecule acts as a proton donor to Glu 270,and that the electrostatic effect of Zn^<2+> and its ligands and the electron delocalization between Zn^<2+> and the water play a significant role in lowering the barrier height of proton transfer. We consider that the carbonyl group of the substrate, without breaking the hydrogen bond between Glu 270 and the Zn-coordinated water molecule, points towards a fifth coordination site slightly away from Zn^<2+>, and that the water molecule itself is modified by its connection to Glu 270 in a way that favors the reaction.
- 社団法人日本薬学会の論文
- 1981-01-25
著者
-
梅山 秀明
School of Pharmaceutical Sciences, Kitasato University
-
梅山 秀明
School Of Pharmaceutical Sciences Kitasato University
-
中川 節子
School of Pharmaceutical Sciences, Kitasato University
-
北浦 和夫
Institute for Molecular Science
-
諸熊 奎治
Institute for Molecular Science
-
中川 節子
北里大学薬学部
-
中川 節子
School Of Pharmaceutical Sciences Kitasato University
関連論文
- Synthesis of Human Renin Inhibitory Peptides, Angiotensinogen Transition-State Analogs Containing a Retro-Inverso Amide Bond
- Synthesis and Structure-Activity Relationships of Human Renin Inhibitors Designed from Angiotensinogen Transition State
- Hydrophobic Effect on the Protein-Ligand Interaction; Hydrophobic Field-Effect Index and Hydrophobic Correlation Index
- Structure-Activity Relationship of Fluorine-Containing Renin Inhibitory Peptides Based upon the Tertiary Structure of Human Renin
- NEW HUMAN RENIN INHIBITORY PEPTIDES : ANGIOTENSINOGEN TRANSITION-STATE ANALOGUES CONTAINING NOVEL LEU-VAL REPLACEMENT AND A RETRO-INVERSO AMIDE BOND
- A NEW METHOD FOR CALCULATING HYDROPHOBIC INTERACTION ENERGY IN THE BIOLOGICAL SYSTEM
- Correlation between Molecular Orbital Distributions in Drug-Receptor Interaction : Diels-Alder Reaction Systems and Dihydrofolate Reductase System(Physical,Chemical)
- Reproduction of ab Initio Electrostatic Potential with Classical Fractional Point Charges(Physical,Chemical)
- Electrostatic Interaction Energy and Solvent Accessibility in the Methotrexate-Reduced Nicotinamide Adenine Dinucleotide Phosphate-Dihydrofolate Reductase Ternary Complex(Medicinal Chemistry,Chemical)
- 薬物-受容体相互作用のグラフィック表現とドラッグデザインへの応用 (構造活性相関とドラッグデザイン)
- Electrostatic Potential Images of Drugs Targetting Dopamine Receptors
- A Molecular Orbital Study on Tetranactin-NH_4+ Complex
- A Molecular Orbital Study on the n-π^* Cotton Effect of ε-Caprolactam
- Molecular Orbital Study of Lactate Dehydrogenase
- Purification and Properties of Z Protein from Rabbit and Rat Liver
- In Vitro Binding of Sulfobromophthalein to Cytoplasmic Protein from Liver, Kidney, and Small Intestinal Mucosa of Rat and Rabbit
- A Molecular Orbital Study on the Effects of Substituents on the Proton Transfer from Ser-195 to His-57 in the Hydrolysis of α-Chymotrypsin
- Computer Screening and Visulization of Hydrophobic Core of Protein
- ELECTROSTATIC FORCES IN THE INHIBITION OF DIHYDROFOLATE REDUCTASE BY METHOTREXATE. A FIELD POTENTIAL STUDY
- CHARGE STATE OF HIS 57-ASP 102 COUPLE IN β-TRYPSIN : A MOLECULAR ORBITAL STUDY
- Molecular Orbital Study of Proton Transfer Energetics in the Active Site of Papain by Using Methanethiol-Imidazole-Formic Acid Complex as a Model
- Energy Decomposition Analyses of Diborane
- Molecular Orbital Study on the Structure and Barrier to Internal Rotation of Phosphine-Borane
- A Molecular Orbital Study on the Zinc-Water-Glu 270 System in Carboxypeptidase A
- Simulation of the Enzymatic Reaction of Dogfish M_4 Lactate Dehydrogenase : A Molecular Orbital Study on the Reactivity of Pyruvate
- Effects of the Hydrogen Bond between His 57 and Asp 102 on the Lone Pair Molecular Orbital of Nitrogen of His 57 in Serine Proteases
- Molecular Orbital Studies on the CH_3CN-BH_3,HCN-BH_3,CH_3NC-BH_3 and HNC-BH_3 Complexes
- Proton Migration in Proton Cryptate : A Molecular Orbital Study on a Proton Cryptate Model
- A Molecular Orbital Study on the (CH_3)_2O-BH_3 Donor-Acceptor Complex
- The Molecular Orbital Study on the Role of Hydrogen Bonding System in the Active Site of Serine Proteases
- A Molecular Orbital Study on the Approach of Hydride Ion to NAD^+ as a Coenzyme
- Adsorption of Benzoic Acid Derivatives by Carbon Black from Aqueous Solution and Related Phenomena
- A Molecular Orbital Study on the Ternary Complex of Tetranactin, NH^+_4 and SCN^-
- A ab Initio Molecular Orbital Study of Molecular Interactions between Formic Acid and Ammonia
- Simulation of the Charge Relay Structure in Ribonuclease A
- セリンプロテアーゼの分子動力学
- Estimation of Hydrophobicity Based on the Solvent-Accessible Surface Area of Molecules
- A Molecular Orbital Study on the Side Chain Structures of Tyrosine and Phenylalanine
- A Molecular Orbital Study on the Complex between Aspartic Acid and Histidine in the Charge Relay Structure
- Ab Initio Molecular Orbital Studies on the Aspirin Solvolysis and Ester Hydrolysis
- Molecular Orbital Studies on Serine, Cysteine, and Modified Proteases
- Effects of Third Component on Hydrophobic and Hydrophilic Moities of Tryptophan in Aqueous Solution. Approach to Understanding of Denaturation of Globular Protein
- Effect of Third Component on Water Structure around Tryptophan in Aqueous Solution
- Mechanism of Adsorption of Phenols by Carbon Black from Aqueous Solution
- Analysis of Solubility Properties of L-Tryptophan in Aqueous Solution based on the Effects of Third Component on Optical Rotatory Dispersion and on Adsorption by Carbon Black
- Molecular Orbital Study on a Chlorine Anion Cryptate
- The Origin of the Internal Rotation Barrier of Borane Compounds
- Energy Decomposition Analysis of Borazane at the Molecular Orbital Level : Origin of the Internal Rotation Barrier of H_3X-YH_3
- A Molecular Orbital Study on the Solvolysis of Aspirin Derivatives and Acyl-α-chymotrypsin