n次元立方体の線形配置のコストについて
スポンサーリンク
概要
- 論文の詳細を見る
n-立方体は, n次元0/1ベクトルの全てを点集合とし, 2点v, w間のハミング距離が1である2点集合{v, w}の全てを辺集合とする無向グラフであり, 線形配置とは, その点を引き続いた正整数の集合上に配置することである.本報告では, 線形配置によって辺が写像されてできる線分の長さの最大値として最大値コストを新たに定義し, それを最小にする線形配置の候補として重み順圧縮配置を提案する.なお, 重み順圧縮配置の最大値コストの最小性は, 計算機実験などにより示唆されているが, 証明の検証は完了していない.なお, 最大値コストの評価にKruskal-Catonaの定理を利用し, 重み順圧縮配置の最大値コストは, 総和コストが最小である自然配置の最大値コストよりも[◯|-](√<n>)倍良いという結果を得た.
- 1998-03-23
著者
-
山本 治
(株)両備システムズ
-
神保 秀司
岡山大学大学院自然科学研究科
-
橋口 攻三郎
岡山大学大学院自然科学研究科
-
山本 治
岡山大学工学部情報工学科
-
神保 秀司
岡山大学工学部情報工学科
-
橋口 攻三郎
岡山大学工学部情報工学科
-
神保 秀司
東北大学大学院情報科学研究科
-
神保 秀司
岡山大学工学部
関連論文
- 双符号形式による楕円曲線暗号系(計算理論とアルゴリズムの新展開)
- n次元立方体の線形配置のコストについて
- n次元立方体の線形配置のコストについて(並列・分散)
- D-1-10 オイラー回帰長問題の近似困難性(D-1.コンピュテーション,一般セッション)
- D-1-10 二項係数の性質に基づいたカタラン数についての漸化式の証明(D-1. コンピュテーション,一般セッション)
- 単調並べ換え関数について(アルゴリズムと計算量理論)
- 和集合のサイズの近似評価について
- アルゴリズムの非確率化と制限付き独立性
- 和集合のサイズの近似評価について
- 包除原理による和集合のサイズの評価について
- $\epsilon$-偏りの確率変数と$\epsilon$-依存の確率変数の間の関係について(計算機構とアルゴリズム)
- 包除原理による和集合のサイズの評価について(理論計算機科学とその周辺)
- Selection Networks with $8n$ log$_2$ $n$ Size and $O$(log $n$) Depth
- 拡張グラフを構成しない線形変換の族について
- 二部グラフの拡張性の評価について(計算機科学の基礎理論)
- n次元立方体の線形配置のコストについて
- On the Shapes of Vertex Subsets of Hypercubes That Minimize Their Boundary (Algebraic Systems, Formal Languages and Computations)
- 交互三部符号及び交互三部符号形式によるRSA暗号系
- 三部符号及び三部符号形式による RSA 暗号系(計算機科学の理論とその応用)
- The NP-completeness of EULERIAN RECURRENT LENGTH (Algebra, Languages and Computation)
- オイラー小道の最短閉路長の最大値決定問題のNP完全性
- D-1-4 完全グラフのオイラー回帰長の上界について(D-1. コンピュテーション)
- 閉路状多部グラフのオイラー回帰長について
- 完全グラフと完全二部グラフの回帰長について
- 多次元トーラスグラフの線形配置
- On Linear Arrangement Problems on Multidimensional Torus Graphs (Algebraic Semigroups, Formal Languages and Computation)
- オイラー小道上の同一点間の間隔について (言語,代数系および計算機システム)
- ハイパーキューブの二分割コストについて
- オイラー回帰長問題の近似不可能性の証明
- AKS 素数判定アルゴリズムについての計算機を用いた実験的考察 (計算機科学とアルゴリズムの数理的基礎とその応用)
- D-1-2 オイラー回帰長の上界についての予想の検証(D-1.コンピュテーション,一般セッション)
- 疑似平方数に基づいた素数判定アルゴリズム (代数系および計算機科学基礎)
- The Eulerian Recurrent Lengths of Complete Graphs (Algebraic Systems and Theoretical Computer Science)
- オイラー回帰長の上界についての予想
- 完全グラフのオイラー回帰長の上界と下界の改良