エッジ情報を用いたSketch Based Coding画像の動き補償に関する研究
スポンサーリンク
概要
- 論文の詳細を見る
近年の映像メディアである、DVDやディジタル衛星TV等が扱う動画像情報は莫大な情報量を有する。この情報量を削減する動画像符号化方式として、現在MPEGが標準的に使用されている。このMPEGは、「DCT+動き補償フレーム間予測」という構成を取っているが、これらにはブロック歪みやモスキートノイズ等、幾つかの欠点がある。そこで、本研究では「DCTとSBC (Sketch Based Coding)を組み合わせたハイブリッド画像符号化方式」を提案し、これらの欠点を改善することを試みる。この方式を動画像符号化に応用することを考慮し、「エッジ情報を用いた動き補償」を検討し、その能力についての検証を行う。
- 1999-03-19
著者
-
熊沢 逸夫
東京工業大学知能システム科学専攻:東京工業大学計算工学専攻
-
熊沢 逸夫
東京工業大学像情報工学研究所
-
山上 秀景
東京工業大学知能システム科学専攻
-
山上 秀景
東京工業大学知能システム科学専攻:東京工業大学計算工学専攻
-
熊沢 逸夫
東京工業大学 像情報工学研究所
関連論文
- 再帰型高次結合ニューラルネットワークによる文脈自由言語の認識
- 再帰型高次結合ニューラルネットワークによる正規言語の学習
- 再起型高次結合ニューラルネットワークによるオートマトンの実現に関する研究
- パネル討論 : パターン認識・メディア理解と数理モデル : 数理モデル研究の現状と将来
- 2次元回折格子を使ったホログラフィックニューラルネットワークに関する研究
- 連載「様々な角度から見たニューラルネットワークの将来像」の企画にあたって
- 初期輪郭線から得られる形状情報を用いた動的輪郭モデル
- 輪郭線周囲のクラスタリングによる動的輪郭モデルの制御
- パターンの変動を考慮した階層型ニューラルネットワークの汎化学習法における精度の改善
- 物体輪郭に沿ったクラスタリングに基づく領域抽出
- パターンの変動を考慮した階層型ニューラルネットワークの汎化能力改善学習法
- 汎化能力改善のための階層型ネットワークの重み表現に対する線形制約の導入と文字認識への応用
- 階層型ニューラルネットワークを用いた多視点画像からの三次元形状復元
- 形状表現ニューラルネットワークによるエッジの高品位表現
- ニューラルネットワークを用いた多視点画像からの三次元オブジェクトモデルの生成に関する研究
- ニューラルネットワークを用いた多視点画像からの三次元オブジェクトモデルの生成に関する研究
- Hough変換と枠の相対位置関係を用いたタブレット記入文字の位置ずれ補正法
- 形状記述ネットワークによる移動物体の追跡 : 実動画像に基づく検討
- 重み表現に線形の従属制約を導入した階層型ニューラルネットワークの写像能力
- 形状マッチングを用いたカメラの位置・姿勢推定
- エッジ情報を用いたSketch Based Coding画像の動き補償に関する研究
- テンプレートの関数表現とセルラー並列計算モデルを用いた2値画像の形状抽出
- 任意形状のアウトライン表現の自動生成
- 内部表現の冗長化によるボルツマンマシンの動作並列化
- キーパターン誤り情報に基づく連想記憶の性能向上
- 2部グラフ構造ニューラルネットワークの性能について
- 直線認識のための平面上のパラメータ伝達モデル