Nonlinear Responses of Dispersive Media.II.A Stability of Stationary Solutions to the KdV Equation with a Sinusoidal Force
スポンサーリンク
概要
- 論文の詳細を見る
In the present paper a Korteweg-de Vries equation with a sinusoidal force and asmall coefficient of dispersion is considered, and by means of numerical computationsit is shown that a class of periodic stationary solutions, found in a previous paper andinterpreted as describing a balance between the nonlinearity and the external force, isneutrally stable.
- 社団法人日本物理学会の論文
- 1988-02-15
著者
-
居城 弘
静岡大学人文学部
-
TANIUTI Tosiya
Department of Engineering,Natural Science-Mathematics,Chubu University
-
Taniuti Tosiya
Department Of Engineering Natural Science-mathematics Chubu University
-
NOZAKI Kazuhiro
Department of Physics, Nagoya University
-
Moriguchi Hirofumi
Department Of Physics Nagoya University
-
Moriguchi Hirofumi
Department Of Physics Faculty Of Science Nagoya University
-
Nozaki K
Department Of Physics Nagoya University
-
Nozaki Kazuhiro
Departmant Of Physics Nagoya University
関連論文
- ドイツ型金融システムにおけるユニバーサルバンク化をめぐって (経済学部50周年記念号)
- 現代ドイツの企業金融構造分析
- 山口博教著, 『ドイツ証券市場史』, 北海道大学出版会, 2006年2月, 298頁, 6,615円
- Solitary and Shock Structures Induced by Poloidal Flow in Tokamaks
- Dynamics of Two-Dimensional Solitary Vortices in a Low-β Plasma with Convective Motion
- Two-Dimensional Stationary Soliton in a Steady Hydromagnetic Flow
- 「金融再生」とリレーションシップバンキング : 地域・中小金融問題を中心として
- The Intersection Angles between N-Dimensional Stable and Unstable Manifolds in 2N-Dimensional Symplectic Mappings
- Renormalization Analysis of Resonance Structure in a 2-D Symplectic Map
- Random Wandering around Homoclinic-Like Manifolds in a Symplectic Map Chain