A Fast Performance Estimation Framework for System-Level Design Space Exploration (System LSI Design Methodology Vol.5)
スポンサーリンク
概要
著者
-
Honda Shinya
Graduate School of Information Science, Nagoya University
-
Honda Shinya
Graduate School Of Information Science Nagoya University
-
Ando Yuki
Graduate School Of Information Science Nagoya University
-
Shibata Seiya
Graduate School Of Information Science Nagoya University
関連論文
- Embedded System Covalidation with RTOS Model and FPGA
- Effective hardware task context switching in Virtex-4 FPGAs (VLSI設計技術)
- Effective hardware task context switching in Virtex-4 FPGAs (コンピュータシステム)
- Effective hardware task context switching in Virtex-4 FPGAs (リコンフィギャラブルシステム)
- Efficient Design Space Exploration at System Level with Automatic Profiler Instrumentation
- Integrated Scheduling in a Real-Time Embedded Hypervisor
- Partitioning of Behavioral Descriptions with Exploiting Function-Level Parallelism
- Function-Level Partitioning of Sequential Programs for Efficient Behavioral Synthesis
- Function Call Optimization for Efficient Behavioral Synthesis
- An RTOS-Based Design and Validation Methodology for Embedded Systems(System Programs)
- RTOS-Centric Cosimulator for Embedded System Design
- Automatic Communication Synthesis with Hardware Sharing for Multi-Processor SoC Design
- Preemptive Hardware Multitasking on Dynamically Partially Reconfigurable FPGAs : Hardware and Reconfiguration Layers
- A Fast Performance Estimation Framework for System-Level Design Space Exploration (System LSI Design Methodology Vol.5)
- A Novel Framework for Effective Preemptive Hardware Multitasking on FPGAs
- Integrated Scheduling for a Reliable Dual-OS Monitor
- Integrated Scheduling for a Reliable Dual-OS Monitor
- Embedded System Covalidation with RTOS Model and FPGA
- A Fast Performance Estimation Framework for System-Level Design Space Exploration
- Proposal and Quantitative Analysis of the CHStone Benchmark Program Suite for Practical C-based High-level Synthesis
- A Channel-based Communication/Synchronization Model for SW-HW Multitasking on Dynamically Partially Reconfigurable FPGAs
- A Channel-based Communication/Synchronization Model for SW-HW Multitasking on Dynamically Partially Reconfigurable FPGAs
- A Channel-based Communication/Synchronization Model for SW-HW Multitasking on Dynamically Partially Reconfigurable FPGAs