Filling-Control Metal-Insulator Transition in the Hubbard Model Studied by the Operator Projection Method
スポンサーリンク
概要
- 論文の詳細を見る
Thermodynamic and dynamical properties of filling-control metal-insulator transition (MIT) in the Hubbard model are studied by the operator projection method, especially in two dimensions. This is a non-perturbative analytic approach to many-body systems. The present theory incorporates the Mott–Hubbard, Brinkman–Rice and Slater pictures of the MIT into a unified framework, together with reproducing low-energy narrow band arising from spin-charge fluctuations. At half filling, single-particle spectra A(ω, k) show formation of two Hubbard bands and their antiferromagnetic shadows separated by a Mott gap in the plane of energy ω and momentum k with lowering temperatures. These four bands produce splitting to two low-energy narrow bands and two SDW-like bands in the dispersion. Near half filling, the low-energy narrow band persists at low temperatures. This narrow band has a particularly weak dispersion and large weights around (π, 0) and (0, π) momenta. The velocity of these low-energy excitations is shown to vanish towards the MIT, indicating the mass divergence as in the Brinkman–Rice picture, but most prominently around (π,0) and (0,π) with strong momentum dependence. This reflects the suppression of the coherence near the MIT. Main structures in A(ω, k) show remarkable similarities to quantum Monte-Carlo results in two dimensions as well as in the one-dimensional Hubbard model. The charge compressibility appears to diverge with decreasing doping concentration in both one and two dimensions in agreement with the exact and quantum Monte-Carlo results. We also discuss implications of the flat dispersion formed near the Fermi level to the observations in high-Tc cuprate superconductors.
- Physical Society of Japanの論文
- 2001-11-15
著者
-
Onoda Shigeki
Institute For Solid State Physics
-
Imada Masatoshi
Institute For Solid State Physics The University Of Tokyo
-
Imada Masatoshi
Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581
-
Onoda Shigeki
Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581
関連論文
- Macroscopic Quantum Tunneling of a Fluxon in a Long Josephson Junction
- Isothermal Excitations of the Massive Thirring Model and Quantum Sine-Gordon Model : Condensed Matter and Statistical Physics
- Control of Superconducting Correlations in High-T_c Cuprates
- Transport Properties of Doped t-J Ladders
- Fate of Quasiparticle at Mott Transition and Interplay with Lifshitz Transition Studied by Correlator Projection Method(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Ground-State Properties and Optical Conductivity of the Transition Metal Oxide Sr_2VO_4(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Magnetic Properties of the Hubbard Model on Three-Dimensional Lattices: Fluctuation-Exchange and Two-Particle Self-Consistent Studies : Condensed Matter: Electronic Properties, etc.
- Critical Exponents of the Metal-Insulator Transition in the Two-Dimensional Hubbard Model
- Towards the Mott Transition in One Dimension
- Single-Particle Pseudogap in Two-Dimensional Electron Systems : Condensed Matter: Electronic Properties, etc.
- Path-Integral Renormalization Group Method for Numerical Study of Strongly Correlated Electron Systems : General Physics
- Incoherent Charge Dynamics in Perovskite Manganese Oxides : Condensed Matter: Electronic Properties, etc.
- Effects of Orbital Degeneracy and Electron Correlation on Charge Dynamics in Perovskite Manganese Oxides
- Quantum Mott Transition and Superconductivity(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- d_ Wave Pairing Fluctuations and Pseudo Spin Gap in Two-Dimensional Electron Systems
- Operator Projection Method Applied to the Single-Particle Green's Function in the Hubbard Model : Condensed Matter: Electronic Properties, etc.
- Superconductivity Emerging near Quantum Critical Point of Valence Transition(Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties)
- Charge Ordered Insulator without Magnetic Order Studied by Correlator Projection Method(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Minus Sign Problem in the Monte Carlo Simulation of Lattice Fermion Systems
- Impurity Effect on Spin Ladder System
- Two-Dimensional Hubbard Model : Metal Insulator Transition Studied by Monte Carl Calculation
- Charge Mass Singularity in Two-Dimensional Hubbard Model
- Crossover of Spin Correlations in the One-Dimensional Hubbard Model
- Optimization of Intitial State Vector in the Ground State Algorithm of Lattice Fermion Simulations
- Fixed Point of the Spin-Fermion Model Doped with a Single Fermion
- Tricritical Behavior in Charge-Order System(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Critical Exponents of the Quantum Phase Transition in a Planar Antiferromagnet
- Dynamic Exponent of t-J and t-J-W Model
- Optical Conductivity of the Two-Dimensional Hubbard Model
- G-type Antiferromagnetism and Orbital Ordering due to the Crystal Field from the Rare-Earth Ions Induced by the GdFeO_3-type Distortion in RTiO_3 Where R = La, Pr, Nd and Sm(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Propert
- First-Principles Computation of YVO_3 : Combining Path-Integral Renormalization Group with Density-Functional Approach(Condensed matter: electronic structure and electrical, magnetic, and optical properties)
- Thermodynamics and Optical Conductivity of a Dissipative Carrier in a Tight Binding Model
- Superfluid-Insulator Transition of Interacting Multi-Component Bosons : Gutzwiller Variational and Quantum Monte Carlo Study
- Numerical Study for the Ground State of Multi-Orbital Hubbard Models
- Phase Diagram of S=1/2 Quasi-One-Dimensional Heisenberg Model with Dimerized Antiferromagnetic Exchange
- Phase Diagram of S=1/2 Antiferromagnetic Heisenberg Model on a Dimerized Square Lattice
- Nonmagnetic Insulating States near the Mott Transitions on Lattices with Geometrical Frustration and Implications for K-(ET)_2Cu_2(CN)_3
- Thermodynamic Relations in Correlated Systems(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Precise Determination of Phase Diagram for Two-Dimensional Hubbard Model with Filling- and Bandwidth-Control Mott Transitions : Grand-Canonical Path-Integral Renormalization Group Approach (Condensed Matter : Electronic Structure, Electrical, Magnetic and
- Enhancement of Pairing Correlation and Spin Gap through Suppression of Single-Particle Dispersion in One-Dimensional Models : Condensed Matter: Electronic Properties, etc.
- Magnetic and Orbital States and Their Phase Transition of the Perovskite-Type Ti Oxides : Strong Coupling Approach : Condensed Matter: Electronic Properties, etc.
- Quantum Effects of Resistance-Shunted Josephson Junctions : Condensed Matter: Electronic Properties, etc.
- Superconducting Correlation of Two-Dimensional Hubbard Model near Half-Filling
- Crucial problem in rapid spectrophotometric determination of 2,4,6-trinitotoluene and its breakthrough method
- Scaling Theory of Transitions between the Mott Insulator and Quantum Fluids
- Finite Temperature Properties of ^4He by the Quantum Monte Carlo Method
- Excitation Spectrum and Effects of Normal Impurities on Heavy Electron Superconductors
- Quantum Mott Transition and Multi-Furcating Criticality(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Absence of Chirality and Flux in Quantum Spin Systems and the Hubbard Model in Two-Dimension
- Finite Temperature Excitations of the XYZ Spin Chain
- Suppressed Coherence due to Orbital Correlations in the Ferromagnetically Ordered Metallic Phase of Mn Compounds
- Magnetic Phase Transition of the Perovskite-Type Ti Oxides : Condensed Matter: Electronic Properties, etc.
- Vortices and Quantum Tunneling in Current-Biased 0-π-O Josephsons Junctions of d-Wave Superconductors
- Crossover of Spin Correlations in One-Dimensional Hubbard Model Studied by Quantum Monte Carlo Method
- Effects of Nonmagnetic Impurity Doping on Spin Ladder System
- Quantum Monte Carlo Simulation of a Two-Dimensional Electron System : Melting of Wigner Crystal
- Effects of Electron Correlation,Orbital Degeneracy and Jahn-Teller Coupling in Perovskite Manganites
- A Quantum Monte Carlo Method and Its Applications to Multi-Orbital Hubbard Models
- Origin of G-type Antiferromagnetism and Orbital-Spin Structures in LaTiO_3
- Superconducting Correlation of the One-Dimensional t-J Model
- Bandwidth controlled metal-insulator transitions(New Developments in Strongly Correlated Electron Systems)
- Orbital Order Effect of Two-Dimensional Spin Gap System for CaV_4O_9
- Gel'fand Levitan Method for Quantum Spin Systems
- Magnetic and Metal–Insulator Transitions through Bandwidth Control in Two-Dimensional Hubbard Models with Nearest and Next-Nearest Neighbor Transfers
- Spin Gaps in S=1/2 Anisotropic-Two -Dimensional Heisenberg Model with Dimerized Antiferromagnetic Exchange : Relation to Ladder Model and Haldane Gap System
- Thermodynamic Properties of Spin 1/2 Triangular Antiferromagnet
- On the Monte Carlo Method for Fermions in Multi-Dimensional Systems
- Filling-Control Metal-Insulator Transition in the Hubbard Model Studied by the Operator Projection Method
- Spin Gap in Two-Dimensional Heisenberg Model for CaV_4O_9
- Path-Integral Renormalization Group Method for Numerical Study on Ground States of Strongly Correlated Electronic Systems