A High-Performance Current-Mode Source Driver IC for Mobile Active Matrix Organic Light Emitting Diode Displays
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we describe two types of 8-bit current-mode driver ICs with a small area and good performance for applications high accuracy current-mode digital-to-analog converters (DACs), and improved channel-to-channel uniformity for active matrix organic light-emitting diode (AMOLED) displays. One uses the proposed current steering DAC (type A), which is an improved architecture of a binary-weighted DAC, and the other uses a DAC that is a combination of a thermometer-decoded of the DAC and a binary-weighted type. The measured results show that the peak integral nonlinearity (INL) is within $\pm 0.5$ the least significant bit (LSB), the peak differential nonlinearity (DNL) is within $\pm 0.5$ LSB, and the nonuniformity of output current among channels and chips is within $\pm 0.5$ LSB. The size of the driver IC is $15{,}820 \times 1{,}500$ μm2 and the total power consumption of the current-mode driver IC is less than 9 mW when the display has full-white pattern with a luminance of 150 cd/m2. The chip area and power consumption with the proposed current DAC are reduced by 26 and 10%, respectively, compared with those of conventional driver ICs with a fully binary-weighted DAC.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2008-03-25
著者
-
Kwon Oh-kyong
Division Of Electrical And Computer Engineering Hanyang University
-
Jeong Il-hun
Division Of Electrical And Computer Engineering Hanyang University
関連論文
- A True 10-bit Data Driver LSI for HDTV TFT-LCDs(Si Devices and Processes,Fundamental and Application of Advanced Semiconductor Devices)
- A High Performance RF LDMOS Power Transistor for Cellular Station Applications(Session A7 High Power Devices)(2004 Asia-Pacific Workshop on Fundamentals and Application of Advanced Semiconductor Devices (AWAD 2004))
- A High Performance RF LDMOS Power Transistor for Cellular Station Applications(Session A7 High Power Devices)(2004 Asia-Pacific Workshop on Fundamentals and Application of Advanced Semiconductor Devices (AWAD 2004))
- TFT Performance Requirements for AMOLEDs towards HDTV Applications(Session A4 Thin Film Transistor)(2004 Asia-Pacific Workshop on Fundamentals and Application of Advanced Semiconductor Devices (AWAD 2004))
- High-Voltage MOS Devices for Flat Panel Display Drivers
- High-Voltage MOS Devices for Flat Panel Display Drivers
- 10-Bit Current Driver LSI for Large-Size and High-Resolution Active Matrix Organic Light Emitting Diode Displays(LSI Applications,Fundamentals and Applications of Advanced Semiconductor Devices)
- A Scalable DC Model of High Voltage LDMOSFETs
- Accurate physical DC and AC models of high-voltage LDMOSFETs (Electron devices: 第15回先端半導体デバイスの基礎と応用に関するアジア・太平洋ワークショップ(AWAD2007))
- Accurate physical DC and AC models of high-voltage LDMOSFETs (Silicon devices and materials: 第15回先端半導体デバイスの基礎と応用に関するアジア・太平洋ワークショップ(AWAD2007))
- 10-bit Current Driver LSI for Large-Size and High-Resolution Active Matrix Organic Light Emitting Diode Displays(Session 4 Silicon Devices II,AWAD2006)
- TFT Performance Requirements for AMOLEDs towards HDTV Applications(Session A4 Thin Film Transistor)(2004 Asia-Pacific Workshop on Fundamentals and Application of Advanced Semiconductor Devices (AWAD 2004))
- High-Voltage MOS Devices with High Energy Implanted Buried Layer : Low-Voltage CMOS Process Comparable High-Voltage MOS Devices(AWAD2003 : Asia-Pacific Workshop on Fundamental and Application of Advanced Semiconductor Devices)
- High-Voltage MOS Devices with High Energy Implanted Buried Layer : Low-Voltage CMOS Process Comparable High-Voltage MOS Devices (AWAD2003 (Asia-Pacific Workshop on Fundamental and Application of Advanced Semiconductor Devices))
- 10-bit Current Driver LSI for Large-Size and High-Resolution Active Matrix Organic Light Emitting Diode Displays(Session 4 Silicon Devices II,AWAD2006)
- Current-Sensing and Voltage-Feedback Driving Method for Large-Area High-Resolution Active Matrix Organic Light Emitting Diodes
- Simple Pixel Structure Using Video Data Correction Method for Nonuniform Electrical Characteristics of Polycrystalline Silicon Thin-Film Transistors and Differential Aging Phenomenon of Organic Light-Emitting Diodes
- Ambient Light Sensing Circuit with Low-Temperature Polycrystalline Silicon p–Intrinsic–n Diode and Source Follower for Auto Brightness Control
- Current Programming Method with Voltage-Variation-Sensing and Current-Feedback Operations for Active Matrix Organic Light-Emitting Diodes
- Transparent Pixel Circuit with Threshold Voltage Compensation Using ZnO Thin-Film Transistors for Active-Matrix Organic Light Emitting Diode Displays
- Data- and Gate-Line-Sharing Pixel Structure and Driving Method for Low-Cost Polycrystalline Silicon Thin Film Transistor Liquid Crystal Displays
- A High-Performance Current-Mode Source Driver IC for Mobile Active Matrix Organic Light Emitting Diode Displays
- Optical Sensing Circuit Using Low-Temperature Polycrystalline Silicon p-Type Thin-Film Transistors and p–Intrinsic–Metal Diode for Active Matrix Displays with Optical Input Functions