Current-Sensing and Voltage-Feedback Driving Method for Large-Area High-Resolution Active Matrix Organic Light Emitting Diodes
スポンサーリンク
概要
- 論文の詳細を見る
There is the problem of picture quality nonuniformity due to thin film transistor (TFT) characteristic variations throughout a panel of large-area high-resolution active matrix organic light emitting diodes. The current programming method could solve this issue, but it also requires very long charging time of a data line at low gray shades. Therefore, we propose a new driving method and a pixel circuit with emission-current sensing and feedback operation in order to resolve these problems. The proposed driving method and pixel circuit successfully compensate threshold voltage and mobility variations of TFTs and overcome the data line charging problem. Simulation results show that emission current deviations of the proposed driving method are less than 1.7% with $\pm 10.0$% mobility and $\pm 0.3$ V threshold voltage variations of pixel-driving TFTs, which means the proposed driving method is applicable to large-area high-resolution applications.
- 2006-05-30
著者
-
Kwon Oh-kyong
Division Of Electrical And Computer Engineering Hanyang University
-
Choi Byong-deok
Division Of Electrical And Computer Engineering Hanyang University
-
Kwon Oh-Kyong
Division of Electrical and Computer Engineering, Hanyang University, Haengdang-Dong, Seongdong-Gu, Seoul, 133-791, Korea
-
In Hai-Jung
Division of Electrical and Computer Engineering, Hanyang University, Haengdang-Dong, Seongdong-Gu, Seoul, 133-791, Korea
-
Chung Ho-Kyoon
Research and Development Center, Samsung SDI Co., Ltd., Yongin-City, Kyungki-Do, Korea
関連論文
- A True 10-bit Data Driver LSI for HDTV TFT-LCDs(Si Devices and Processes,Fundamental and Application of Advanced Semiconductor Devices)
- A High Performance RF LDMOS Power Transistor for Cellular Station Applications(Session A7 High Power Devices)(2004 Asia-Pacific Workshop on Fundamentals and Application of Advanced Semiconductor Devices (AWAD 2004))
- A High Performance RF LDMOS Power Transistor for Cellular Station Applications(Session A7 High Power Devices)(2004 Asia-Pacific Workshop on Fundamentals and Application of Advanced Semiconductor Devices (AWAD 2004))
- Hybrid 8-bit Digital-to-Analog Converter for Mobile Active Matrix Flat Panel Displays Using Low-Temperature Polycrystalline Silicon Thin Film Transistors
- TFT Performance Requirements for AMOLEDs towards HDTV Applications(Session A4 Thin Film Transistor)(2004 Asia-Pacific Workshop on Fundamentals and Application of Advanced Semiconductor Devices (AWAD 2004))
- High-Voltage MOS Devices for Flat Panel Display Drivers
- High-Voltage MOS Devices for Flat Panel Display Drivers
- 10-Bit Current Driver LSI for Large-Size and High-Resolution Active Matrix Organic Light Emitting Diode Displays(LSI Applications,Fundamentals and Applications of Advanced Semiconductor Devices)
- A Scalable DC Model of High Voltage LDMOSFETs
- Accurate physical DC and AC models of high-voltage LDMOSFETs (Electron devices: 第15回先端半導体デバイスの基礎と応用に関するアジア・太平洋ワークショップ(AWAD2007))
- Accurate physical DC and AC models of high-voltage LDMOSFETs (Silicon devices and materials: 第15回先端半導体デバイスの基礎と応用に関するアジア・太平洋ワークショップ(AWAD2007))
- 10-bit Current Driver LSI for Large-Size and High-Resolution Active Matrix Organic Light Emitting Diode Displays(Session 4 Silicon Devices II,AWAD2006)
- TFT Performance Requirements for AMOLEDs towards HDTV Applications(Session A4 Thin Film Transistor)(2004 Asia-Pacific Workshop on Fundamentals and Application of Advanced Semiconductor Devices (AWAD 2004))
- High-Voltage MOS Devices with High Energy Implanted Buried Layer : Low-Voltage CMOS Process Comparable High-Voltage MOS Devices(AWAD2003 : Asia-Pacific Workshop on Fundamental and Application of Advanced Semiconductor Devices)
- High-Voltage MOS Devices with High Energy Implanted Buried Layer : Low-Voltage CMOS Process Comparable High-Voltage MOS Devices (AWAD2003 (Asia-Pacific Workshop on Fundamental and Application of Advanced Semiconductor Devices))
- 10-bit Current Driver LSI for Large-Size and High-Resolution Active Matrix Organic Light Emitting Diode Displays(Session 4 Silicon Devices II,AWAD2006)
- A High-Speed and Low-Power Inverter Circuit Using p-Channel Metal Oxide Semiconductor Low-Temperature Polycrystalline Silicon Thin Film Transistors
- Current-Sensing and Voltage-Feedback Driving Method for Large-Area High-Resolution Active Matrix Organic Light Emitting Diodes
- Simple Pixel Structure Using Video Data Correction Method for Nonuniform Electrical Characteristics of Polycrystalline Silicon Thin-Film Transistors and Differential Aging Phenomenon of Organic Light-Emitting Diodes
- Counting-Based Digital-to-Analog Converter Scheme for Compact Column Driver with Low-Temperature Polycrystalline Silicon Thin-Film Transistors
- Hybrid 8-bit Digital-to-Analog Converter for Mobile Active Matrix Flat Panel Displays Using Low-Temperature Polycrystalline Silicon Thin Film Transistors
- Ambient Light Sensing Circuit with Low-Temperature Polycrystalline Silicon p–Intrinsic–n Diode and Source Follower for Auto Brightness Control
- Current Programming Method with Voltage-Variation-Sensing and Current-Feedback Operations for Active Matrix Organic Light-Emitting Diodes
- Transparent Pixel Circuit with Threshold Voltage Compensation Using ZnO Thin-Film Transistors for Active-Matrix Organic Light Emitting Diode Displays
- Data- and Gate-Line-Sharing Pixel Structure and Driving Method for Low-Cost Polycrystalline Silicon Thin Film Transistor Liquid Crystal Displays
- A High-Performance Current-Mode Source Driver IC for Mobile Active Matrix Organic Light Emitting Diode Displays
- Optical Sensing Circuit Using Low-Temperature Polycrystalline Silicon p-Type Thin-Film Transistors and p–Intrinsic–Metal Diode for Active Matrix Displays with Optical Input Functions