Local Change of Carbon Nanotube-Metal Contacts by Current Flow through Electrodes
スポンサーリンク
概要
- 論文の詳細を見る
The new processes of current flow through electrodes at carbon nanotube (CNT)-electrode junctions were carried out to change the contact resistance of CNT conductors and the tunnel barriers of CNT quantum dots. When the current flow process was applied to CNT conductors with the Au/Ti electrodes deposited on multiwall CNTs (MWNTs), the contact resistance markedly decreased. This is caused by the formation of titanium carbide (TiC) at the electrode-nanotube junction due to the strong interaction between Ti and nanotubes. This process is useful for obtaining the CNT conductor with low contact resistance. Meanwhile, when the current flow process was applied to single-wall CNT (SWNT) quantum dots with Au-Ag alloy electrodes, the contact resistance hardly changed due to the weak nanotube-Au-Ag interaction. However, in the electrical measurement of these samples at low temperatures, a quantum dot with a strong confinement was obtained after the current flow process. Therefore, this process can be also used for the change of tunnel junctions of CNT quantum dots.
- 2004-04-15
著者
-
Ishibashi Koji
Advanced Device Laboratory Riken:crest Japan Science And Technology(jst)
-
SUZUKI Masaki
CREST, Japan Science and Technology (JST)
-
Maki Hideyuki
Advanced Device Laboratory The Institute Of Physical And Chemical Research (riken)
-
Maki Hideyuki
Advanced Device Laboratory, The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
-
Ishibashi Koji
Advanced Device Laboratory, The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
関連論文
- Observation of Quantum Level Spectrum for Silicon Double Single-Electron Transistors
- Quantum dot transport of semiconducting single-wall carbon nanotubes
- Low Pressure Chemical Vapor Deposition of Single-Wall Carbon Nanotubes
- Band-Gap Tuning of an Individual Single-Walled Carbon Nanotube with Uniaxial Strain
- Electric properties of single-walled carbon nanotube film field effect transistors with various work function electrodes : a comparison between pristine and potassium-encapsulated nanotubes
- Electronic Transport of a Carbon Nanotube Quantum Dot in Different Coupling Regimes
- Local Change of Carbon Nanotube-Metal Contacts by Current Flow through Electrodes
- On the Realization of Quantum Computing Devices with Carbon Nanotube Quantum Dots(New System Paradigms for Integrated Electronics)
- Fabrication of Nanogap Electrodes by the Molecular Lithography Technique
- Single-Electron Transport through Semiconducting Nanowires: A Comparison between Silicon and Germanium
- Transport Characteristic Control of Field-Effect Transistors with Single-Walled Carbon Nanotube Films Using Electrode Metals with Low and High Work Functions
- Towards graphene GHz/THz nanosensor (Selected topics in applied physics: Technology, physics, and modeling of graphene devices)
- Electronic Transport of Single-Wall Carbon Nanotubes with Superconducting Contacts
- Effect of Quantum Hall State of Substrate on Single-Electron Transport of Carbon Nanotube Quantum Dots
- One-Dimensional Shell Structures and Excitation Spectrum in Single-Wall Carbon Nanotube Quantum Dots
- Band Gap Narrowing and Electron Doping by Potassium Encapsulation into Single-Walled Carbon Nanotubes
- Local Change of Carbon Nanotube-Metal Contacts by Current Flow through Electrodes
- Temperature Evolution of Spin-Polarized Electron Tunneling in Silicon Nanowire-Permalloy Lateral Spin Valve System
- Throughput Scaling of Ultra-Wide Band Ad Hoc Networks with Infrastructure
- Analysis of Operation Mechanism of Field Effect Transistor Composed of Network of High-Quality Single Wall Carbon Nanotubes by Scanning Gate Microscopy
- Quantum Dots and Their Tunnel Barrier in Semiconducting Single-Wall Carbon Nanotubes with a p-Type Behavior
- Electronic Transport of a Carbon Nanotube Quantum Dot in Different Coupling Regimes
- Fabrication of a Single-Electron Inverter in Single-Wall Carbon Nanotubes
- Nested Transmit Diversity Based on a Joint Network-Channel Coding
- Low Pressure Chemical Vapor Deposition of Single-Wall Carbon Nanotubes
- B-5-98 Adaptive Network Coded Cooperation with One-bit Feedback