Fundamental Tribological and Removal Rate Studies of Inter-Layer Dielectric Chemical Mechanical Planarization
スポンサーリンク
概要
- 論文の詳細を見る
In this work, real-time coefficient of friction (COF) analysis, in conjunction with a new method for approximating the Sommerfeld Number, is used to determine the extent of normal and shear forces during chemical mechanical planarization (CMP) and to help identify the tribology of the system. A new parameter termed the 'tribological mechanism indicator' is defined and extracted from the resulting Stribeck curves. The information on COF, 'tribological mechanism indicator' and inter-layer dielectric (ILD) removal rate results in a series of 'universal' correlations to help identify polishing conditions for optimized pad life and removal rate. Results further show that abrasive concentration, surface texture and pad grooving dramatically shift the tribology of the system from boundary lubrication to partial lubrication. Trends are explained using several models based on area of contact between wafer and abrasive particles, the extent of lubricity of the system and the compliance of the pad in micro- and macro-scales.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2003-10-15
著者
-
PHILIPOSSIAN Ara
Department of Chemical and Environmental Engineering University of Arizona
-
OLSEN Scott
Department of Chemical and Environmental Engineering University of Arizona
関連論文
- Role of Slurry Flow Rate and Solids Content on Critical Tribological and Fluid Dynamics Attributes of ILD CMP
- Slurry Utilization Efficiency Studies in Chemical Mechanical Planarization
- Characterization of Slurry Residues in Pad Grooves for Diamond Disc and High Pressure Micro Jet Pad Conditioning Processes
- TRIBOLOGY, FLUID DYNAMICS AND REMOVAL RATE CHARACTERIZATION OF NOVEL SLURRIES FOR ILD POLISH APPLICATIONS
- Frictional and Removal Rate Studies of Silicon Dioxide and Silicon Nitride CMP Using Novel Cerium Dioxide Abrasive Slurries
- Dependence of Oxide Pattern Density Variation on Motor Current Endpoint Detection during Shallow Trench Isolation Chemical Mechanical Planarization
- The Spectral Fingerprints and the Sounds of Chemical Mechanical Planarization Processes
- Analysis of Formation of Pad Stains in Copper Chemical Mechanical Planarization
- Slurry Utilization Efficiency Studies in Chemical Mechanical Planarization
- Effect of Pad Surface Micro-Texture on Removal Rate during Interlayer Dielectric Chemical Mechanical Planarization Process
- Tribological, Thermal, and Kinetic Characterization of 300-mm Copper Chemical Mechanical Planarization Process
- Analysis of A Novel Slurry Injection System in Chemical Mechanical Planarization
- Characterization of Slurry Residues in Pad Grooves for Diamond Disc and High Pressure Micro Jet Pad Conditioning Processes
- Fundamental Tribological and Removal Rate Studies of Inter-Layer Dielectric Chemical Mechanical Planarization