A Thermophilic Alkalophilic α-Amylase from Bacillus sp. AAH-31 Shows a Novel Domain Organization among Glycoside Hydrolase Family 13 Enzymes
スポンサーリンク
概要
- 論文の詳細を見る
α-Amylases (EC 3.2.1.1) hydrolyze internal α-1,4-glucosidic linkages of starch and related glucans. Bacillus sp. AAH-31 produces an alkalophilic thermophilic α-amylase (AmyL) of higher molecular mass, 91 kDa, than typical bacterial α-amylases. In this study, the AmyL gene was cloned to determine its primary structure, and the recombinant enzyme, produced in Escherichia coli, was characterized. AmyL shows no hydrolytic activity towards pullulan, but the central region of AmyL (Gly395-Asp684) was similar to neopullulanase-like α-amylases. In contrast to known neopullulanase-like α-amylases, the N-terminal region (Gln29-Phe102) of AmyL was similar to carbohydrate-binding module family 20 (CBM20), which is involved in the binding of enzymes to starch granules. Recombinant AmyL showed more than 95% of its maximum activity in a pH range of 8.2–10.5, and was stable below 65 °C and from pH 6.4 to 11.9. The kcat values for soluble starch, γ-cyclodextrin, and maltotriose were 103 s−1, 67.6 s−1, and 5.33 s−1, respectively, and the Km values were 0.100 mg/mL, 0.348 mM, and 2.06 mM, respectively. Recombinant AmyL did not bind to starch granules. But the substitution of Trp45 and Trp84, conserved in site 1 of CBM20, with Ala reduced affinity to soluble starch, while the mutations did not affect affinity for oligosaccharides. Substitution of Trp61, conserved in site 2 of CBM20, with Ala enhanced hydrolytic activity towards soluble starch, indicating that site 2 of AmyL does not contribute to binding to soluble long-chain substrates.
著者
-
MATSUI Hirokazu
Research Faculty of Agriculture, Hokkaido University
-
Mori Haruhide
Research Faculty Of Agriculture Hokkaido University
-
Saburi Wataru
Research Faculty Of Agriculture Hokkaido University
-
Kim Dae
Research Faculty Of Agriculture Hokkaido University
-
Mukai Atsushi
Research Faculty Of Agriculture Hokkaido University
-
MORIMOTO Naoki
Adeka Clean Aid Corporation
-
TAKEHANA Toshihiko
Adeka Clean Aid Corporation
-
KOIKE Seiji
Adeka Corporation
-
KIM Dae
Research Faculty of Agriculture, Hokkaido University
-
MORIMOTO Naoki
Adeka Corporation
関連論文
- 植物α-グルコシダーゼ, 特にイネ酵素の分子解析と発芽時の澱粉粒分解に関する研究
- 植物α-アミラーゼの機能と構造に関する研究
- Streptococcus mutans Dextran Glucosidase の基質認識機構
- 大腸菌 YicI(α-xylosidase) の基質認識機構
- Function-unknown Glycoside Hydrolase Family 31 Proteins, mRNAs of which were Expressed in Rice Ripening and Germinating Stages, are α-Glucosidase and α-Xylosidase
- Crystallization and preliminary X-ray analysis of Streptococcus mutans dextran glucosidase
- Multiple forms of α-glucosidase in rice seeds (Oryza sativa L., var Nipponbare)
- Purification and Characterization of α-Glucosidase I from Japanese Honeybee (Apis cerana japonica) and Molecular Cloning of Its cDNA
- Glucoamylase Originating from Schwanniomyces occidentalis Is a Typical α-Glucosidase
- Localization of α-Glucosidases I, II, and III in Organs of European Honeybees, Apis mellifera L., and the Origin of α-Glucosidase in Honey
- Interactions between Barley α-Amylases, Substrates, Inhibitors and Regulatory Proteins
- Molecular Cloning, Functional Expression, and Tissue Distribution of a Potato Sprout Allene Oxide Synthase Involved in a 9-Lipoxygenase Pathway
- ω-エポキシアルキルα-D-グルコピラノシドによるエンド型デキストラナーゼの自殺基質型失活
- Molecular Cloning of cDNAs and Genes for Three α-Glucosidases from European Honeybees, Apis mellifera L., and Heterologous Production of Recombinant Enzymes in Pichia pastoris
- Catalytic Reaction Mechanism Based on α-Secondary Deuterium Isotope Effects in Hydrolysis of Trehalose by European Honeybee Trehalase
- Comparison of Enzymatic Properties and Gene Expression Profiles of Two Tuberonic Acid Glucoside β-Glucosidases from Oryza sativa L.
- Crystallization and preliminary crystallographic analysis of dextranase from Streptococcus mutans
- Calcium ion-dependent increase in thermostability of dextran glucosidase from Streptococcus mutans.
- Truncation of N- and C-terminal regions of Streptococcus mutans dextranase enhances catalytic activity.
- Biochemical Characterization of a Thermophilic Cellobiose 2-Epimerase from a Thermohalophilic Bacterium, Rhodothermus marinus JCM9785
- Purification and Characterization of a Liquefying α-Amylase from Alkalophilic Thermophilic Bacillus sp. AAH-31
- Enzymatic Characteristics of Cellobiose Phosphorylase from Ruminococcus albus NE1 and Kinetic Mechanism of Unusual Substrate Inhibition in Reverse Phosphorolysis
- The Delay in the Development of Experimental Colitis from Isomaltosyloligosaccharides in Rats Is Dependent on the Degree of Polymerization
- Purification and Characterization of a Liquefying α-Amylase from Alkalophilic Thermophilic Bacillus sp. AAH-31
- Enzymatic Characteristics of Cellobiose Phosphorylase from Ruminococcus albus NE1 and Kinetic Mechanism of Unusual Substrate Inhibition in Reverse Phosphorolysis
- Immobilization of a Thermostable Cellobiose 2-Epimerase from Rhodothermus marinus JCM9785 and Continuous Production of Epilactose
- A Thermophilic Alkalophilic α-Amylase from Bacillus sp. AAH-31 Shows a Novel Domain Organization among Glycoside Hydrolase Family 13 Enzymes
- Modulation of Allosteric Regulation by E38K and G101N Mutations in the Potato Tuber ADP-glucose Pyrophosphorylase
- Aromatic Residue on β→α Loop 1 in the Catalytic Domain Is Important to the Transglycosylation Specificity of Glycoside Hydrolase Family 31 α-Glucosidase
- Amino Acids in Conserved Region II Are Crucial to Substrate Specificity, Reaction Velocity, and Regioselectivity in the Transglucosylation of Honeybee GH-13 α-Glucosidases
- Characterization of a Glycoside Hydrolase Family 31 α-Glucosidase Involved in Starch Utilization in Podospora anserina
- Identification and Characterization of Cellobiose 2-Epimerases from Various Aerobes
- Identification of Rice β-Glucosidase with High Hydrolytic Activity towards Salicylic Acid β-D-Glucoside
- Enzymatic Synthesis of Acarviosyl-maltooligosaccharides Using Disproportionating Enzyme 1