Molecular Cloning and Expression of the hyu Genes from Microbacterium liquefaciens AJ 3912, Responsible for the Conversion of 5-Substituted Hydantoins to α-Amino Acids, in Escherichia coli
スポンサーリンク
概要
- 論文の詳細を見る
A DNA fragment from Microbacterium liquefaciens AJ 3912, containing the genes responsible for the conversion of 5-substituted-hydantoins to α-amino acids, was cloned in Escherichia coli and sequenced. Seven open reading frames (hyuP, hyuA, hyuH, hyuC, ORF1, ORF2, and ORF3) were identified on the 7.5 kb fragment. The deduced amino acid sequence encoded by the hyuA gene included the N-terminal amino acid sequence of the hydantoin racemase from M. liquefaciens AJ 3912. The hyuA, hyuH, and hyuC genes were heterologously expressed in E. coli; their presence corresponded with the detection of hydantoin racemase, hydantoinase, and N-carbamoyl α-amino acid amido hydrolase enzymatic activities respectively. The deduced amino acid sequences of hyuP were similar to those of the allantoin (5-ureido-hydantoin) permease from Saccharomyces cerevisiae, suggesting that hyuP protein might function as a hydantoin transporter.
- 社団法人 日本農芸化学会の論文
著者
-
Yokozeki Kenzo
AminoScience Laboratories, Ajinomoto Co., Inc.
-
Yokozeki Kenzo
Aminoscience Laboratories Ajinomoto Co. Inc.
-
TAKENAKA Yasuhiro
Aminoscience Laboratories, Ajinomoto Co., Inc.
-
Onishi Norimasa
Amino Science Laboratories Ajinomoto Co. Inc.
-
SUZUKI Shun’ichi
AminoScience Laboratories, Ajinomoto Co., Inc.
関連論文
- Screening, purification, and identification of the enzyme producing N-(L-α-L-aspartyl)-L-phenylalanine methyl ester from L-isoasparagine and L-phenylalanine methyl ester(ENZYMOLOGY, PROTEIN ENGINEERING, AND ENZYME TECHNOLOGY)
- Hyperproduction of 3,4-Dihydroxyphenyl-L-alanine (L-Dopa) Using Erwinia herbicola Cells Carrying a Mutant Transcriptional Regulator TyrR
- Coenzyme Specificity of Enzymes in the Oxidative Pentose Phosphate Pathway of Gluconobacter oxydans(Microbiology & Fermentation Technology)
- Construction of a Vector Plasmid for Use in Gluconobacter oxydans(Microbiology & Fermentation Technology)
- gsk Disruption Leads to Guanosine Accumulation in Escherichia coli
- Adenine Deaminase Activity of the yicP Gene Product of Escherichia coli
- Production of D-Arabitol by Metschnikowia reukaufii AJ14787(Microbiology & Fermentation Technology)
- Novel Enzymatic Method for the Production of Xylitol from D-Arabitol by Gluconobacter oxydans(Microbiology & Fermentation Technology)
- Transaldolase/Glucose-6-phosphate Isomerase Bifunctional Enzyme and Ribulokinase as Factors to Increase Xylitol Production from D-Arabitol in Gluconobacter oxydans(Microbiology & Fermentation Technology)
- Cloning of the Xylitol Dehydrogenase Gene from Gluconobacter oxydans and Improved Production of Xylitol from D-Arabitol(Microbiology & Fermentation Technology)
- Purification and characterization of a (S)-1-phenyl-1, 3-propanediol-producing enzyme from Williopsis saturnus var. mrakii AJ-5620(ENZYMOLOGY, PROTEIN ENGINEERING, AND ENZYME TECHNOLOGY)
- Gene Cloning of α-Methylserine Aldolase from Variovorax paradoxus and Purification and Characterization of the Recombinant Enzyme
- Cloning of the Gene Encoding α-Methylserine Hydroxymethyltransferase from Aminobacter sp. AJ110403 and Ensifer sp. AJ110404 and Characterization of the Recombinant Enzyme
- Hyperproduction of 3,4-Dihydroxyphenyl-L-alanine (L-Dopa) Using Erwinia herbicola Cells Carrying a Mutant Transcriptional Regulator TyrR
- Purification and Characterization of Hydantoin Racemase from Microbacterium liquefaciens AJ 3912
- Molecular Cloning and Expression of the hyu Genes from Microbacterium liquefaciens AJ 3912, Responsible for the Conversion of 5-Substituted Hydantoins to α-Amino Acids, in Escherichia coli
- Cloning of the Gene Encoding α-Methylserine Hydroxymethyltransferase from Aminobacter sp. AJ110403 and Ensifer sp. AJ110404 and Characterization of the Recombinant Enzyme
- Gene Cloning of α-Methylserine Aldolase from Variovorax paradoxus and Purification and Characterization of the Recombinant Enzyme
- Purification and Characterization of a (R)-1-Phenyl-1,3-propanediol-producing Enzyme from Trichosporon fermentans AJ-5152 and Enzymatic (R)-1-Phenyl-1,3-propanediol Production