Towards regeneration of BPSK signals in periodically-poled-lithium-niobate waveguides (フォトニックネットワーク)
スポンサーリンク
概要
- 論文の詳細を見る
We use high pump power to demonstrate high C-band, phase-sensitive gain in a periodically-poled lithium-niobate waveguide. We measure a maximum phase dependent dynamic range of 16.5dB with 5dB phase-sensitive gain compared to phase insensitive operation over a bandwidth of up to 32nm and we highlight limitations arising at high pump powers from green light emission and thermal instability. Finally, we describe a set-up that could be used to investigate phase squeezing properties of PPLN based phase sensitive amplifier.
- 社団法人電子情報通信学会の論文
- 2011-01-20
著者
-
Puttnam Ben
Photonic Network Group New Generation Network Research Center National Institute Of Information &
-
Wada Naoya
National Inst. Information And Communications Technol. Tokyo Jpn
-
Mazroa Daniel
Budapest University Of Technology And Economics Dept. Of Telecommunications And Media Informatics
-
Shinada Satoshi
National Institute Of Information And Communications Technology New Generation Network Research Cent
-
Wada Naoya
Photonic Network Group New Generation Network Research Center National Institute Of Information &
-
Wada Naoya
National Institute Of Information And Communications Technology New Generation Network Research Cent
-
Mazroa Daniel
Dept. Of Telecommunications & Media Informatics Budapest University Of Technology & Economic
-
Puttnam Ben
Photonic Network Group New Generation Network Research Center National Institute Of Information &
-
Shinada Satoshi
Photonic Network Group New Generation Network Research Center National Institute Of Information &
-
Wada Naoya
Photonic Network Group New Generation Network Research Center National Institute Of Information &
-
PUTTNAMI Ben
Photonic Network Group, New Generation Network Research Center, National Institute of Information &
-
MAZROAI Daniel
Dept. of Telecommunications & Media Informatics, Budapest University of Technology & Economics
-
Shinada Satoshi
Photonic Network Group New Generation Network Research Center National Institute Of Information &
-
Puttnami Ben
Photonic Network Group New Generation Network Research Center National Institute Of Information &
-
Mazroai Daniel
Dept. Of Telecommunications & Media Informatics Budapest University Of Technology & Economic
-
Wada Naoya
Photonic Network Group National Institute Of Information And Communications Technology (nict)
-
Puttnam Ben
Photonic Network Group New Generation Network Research Center National Institute Of Information &
関連論文
- Investigating the Performance and Limits of a Burst-Mode EDFA in Optical Packet and Burst-Switched Networks
- Amplitude vs Phase Regeneration for BPSK Modulation Format
- Towards regeneration of BPSK signals in periodically-poled-lithium-niobate waveguides (レーザ・量子エレクトロニクス)
- Towards regeneration of BPSK signals in periodically-poled-lithium-niobate waveguides (光エレクトロニクス)
- Towards regeneration of BPSK signals in periodically-poled-lithium-niobate waveguides (フォトニックネットワーク)
- Programmable Coupler Ladder Based on Lithium Niobate Y-Junction Reflector(Optical Signal-Processing Devices for Photonic Networks)
- Optical Packet Switching Network Based on Ultra-Fast Optical Code Label Processing(Ultrafast Photonics)
- Multi-Stage Fiber Delay Line Buffer in Photonic Packet Switch for Asynchronously Arriving Variable-Length Packets(Internet)
- Coherent Code-Shift-Keying OCDMA System
- Coherent Code-Shift-Keying OCDMA System
- Phase modulation of time domain stretched pulse for reconfigurable spectral phase encoding OCDMA (フォトニックネットワーク)
- A Resonant Type LiNbO_3 Optical Modulator Array with Micro-Strip Antennas(LiNbO_3 Devices,Recent Advances in Integrated Photonic Devices)
- Low-Temperature Au-to-Au Bonding for LiNbO_3/Si Structure Achieved in Ambient Air(Micro/Nano Fabrication,Microoptomechatronics)
- Towards regeneration of BPSK signals in periodically-poled-lithium-niobate waveguides
- Towards regeneration of BPSK signals in periodically-poled-lithium-niobate waveguides (レーザ・量子エレクトロニクス)
- Towards regeneration of BPSK signals in periodically-poled-lithium-niobate waveguides (光エレクトロニクス)
- Towards regeneration of BPSK signals in periodically-poled-lithium-niobate waveguides (フォトニックネットワーク)
- Discrimination of All Types of 4-Bit Optical Code by Optical Time-Gating and Designed Label Recognition Filter in Label Recognition Using Optical Correlation(Next Generation Photonic Network Technologies)
- Cutting-Edge Technologies on Broadband and Scalable Photonic-Network : Packet switched networks based on all-optical label processing
- Combining mitigation and compensation of EDFA gain transients in dynamic optical networks (フォトニックネットワーク)
- Photonic Network Technologies for New Generation Network
- Phase-squeezing properties of non-degenerate PSAs using PPLN waveguides
- Phase-squeezing properties of non-degenerate PSAs using PPLN waveguides
- Phase-squeezing properties of non-degenerate PSAs using PPLN waveguides
- Phase-squeezing properties of non-degenerate PSAs using PPLN waveguides (レーザ・量子エレクトロニクス)
- Investigating the Performance of a Transient-Suppressed EDFA in Optical Packet and Burst-Switched Networks
- Phase-squeezing properties of non-degenerate PSAs using PPLN waveguides
- Repetition-Rate-Tunable Terahertz Optical Clock Generation Based on Optical Spectrum Synthesizer Using Attenuation and Phase-Tunable Arrayed Waveguide Grating
- Challenges in Coherent Optical Packet Switching
- All-optical NRZ-OOK to PSK-Manchester Modulation Format Conversion
- Schemes for Black-Box Phase Regeneration Using Phase Sensitive Amplifiers based on PPLN Waveguides
- Investigation of Receiver DSP Carrier Phase Estimation Rate for Self-homodyne Space-division Multiplexing Communication Systems
- In-Service Path-Length Alignment for Self-Homodyne Coherent-Detection - Spatial Division Multiplexing Systems
- Self-homodyne coherent detection using a 19-core fiber
- Self-homodyne coherent detection using a 19-core fiber
- Self-homodyne coherent detection using a 19-core fiber
- Self-homodyne coherent detection using a 19-core fiber
- Self-homodyne coherent detection using a 19-core fiber
- In-Service Path-Length Alignment for Self-Homodyne Coherent-Detection - Spatial Division Multiplexing Systems
- In-Service Path-Length Alignment for Self-Homodyne Coherent-Detection - Spatial Division Multiplexing Systems
- In-Service Path-Length Alignment for Self-Homodyne Coherent-Detection - Spatial Division Multiplexing Systems
- In-Service Path-Length Alignment for Self-Homodyne Coherent-Detection - Spatial Division Multiplexing Systems
- Investigation of Receiver DSP Carrier Phase Estimation Rate for Self-homodyne Space-division Multiplexing Communication Systems
- Investigation of Receiver DSP Carrier Phase Estimation Rate for Self-homodyne Space-division Multiplexing Communication Systems
- Investigation of Receiver DSP Carrier Phase Estimation Rate for Self-homodyne Space-division Multiplexing Communication Systems
- Investigation of Receiver DSP Carrier Phase Estimation Rate for Self-homodyne Space-division Multiplexing Communication Systems
- Investigation of Receiver DSP Carrier Phase Estimation Rate for Self-homodyne Space-division Multiplexing Communication Systems
- Self-homodyne coherent detection using a 19-core fiber
- In-Service Path-Length Alignment for Self-Homodyne Coherent-Detection-Spatial Division Multiplexing Systems
- Polarization Diversity Coherent Receiver for Self-Homodyne Detection of Polarization-Multiplexed Pilot Tone Signals
- Single-pump, Tunable Wavelength Converter Based on PPLN Waveguides Designed by the Layer Peeling
- Fast Equalizer Kernel Initialization for Coherent PDM-QPSK Burst-mode Receivers Based on Stokes Estimator
- Demonstration of an offline PDM-16QAM coherent burst-mode receiver in a 10 Tbit/s optical switching node
- Demonstration of an offline PDM-16QAM coherent burst-mode receiver in a 10 Tbit/s optical switching node
- Energy Efficient Modulation Formats for Multi-Core-Fibers
- Polarization and Modulation-Format Insensitive Self-Homodyne Detection
- Polarization and Modulation-Format Insensitive Self-Homodyne Detection
- All-optical NRZ-OOK to PSK-Manchester Modulation Format Conversion
- Challenges in Coherent Optical Packet Switching
- Schemes for Black-Box Phase Regeneration Using Phase Sensitive Amplifiers based on PPLN Waveguides
- Polarization and Modulation-Format Insensitive Self-Homodyne Detection
- Energy Efficient Modulation Formats for Multi-Core-Fibers
- Polarization and Modulation-Format Insensitive Self-Homodyne Detection