正規化LoG関数の近似に基づく局所不変特徴量の抽出(一般セッション6,三次元画像,多視点画像)
スポンサーリンク
概要
- 論文の詳細を見る
画像の対応付けのために局所不変特徴量を抽出する際,画像内に局所領域を設定する.この設定は,局所領域の位置と固有スケールを計算可能な特徴点抽出を通じて行うことができる.固有スケールの検出には正規化LoG関数が用いられるが,スケールスペース生成のために数多くの畳み込み演算を必要とする.本論文では,計算量の削減を目的とし,正規化LoG関数の近似に基づく局所不変特徴量の抽出方法を提案する.提案方法では,正規化LoG関数の極値点に位置する画素のみから,近似LoGフィルタの応答を計算する.極値点に位置する画素の値とフィルタ応答の関係を多項式によりモデル化し,その多項式の係数を大量の事例画像を用いて決定する.提案する近似LoGフィルタは,コーナー検出フィルタと容易に併用可能なため,直線エッジに対する不要な応答を抑制できる.実画像を用いた実験により,提案する近似LoGフィルタは,従来の特徴点抽出フィルタより高いrepeatabilityをもつことを示す.また,提案方法により得られた局所不変特徴量の,広告看板認識,道路標識認識,および,video stabilizationへの適用例を示す.
- 2008-03-03
著者
関連論文
- 近似LoGフィルタを用いた局所不変特徴量の抽出 : GPUによる実装(一般セッション5,アンビエント環境知能)
- 近似LoGフィルタを用いた局所不変特徴量の抽出 : GPUによる実装(一般セッション5,アンビエント環境知能)
- 近似LoGフィルタを用いた局所不変特徴量の抽出 : GPUによる実装(一般セッション5)
- 密なエッジサンプリングに基づく局所不変特徴量による対応付け(一般セッション,実世界センシングとその応用)
- 正規化LoG関数の近似に基づく局所不変特徴量の抽出(一般セッション17)
- 正規化LoG関数の近似に基づく局所不変特徴量の抽出(一般セッション6,三次元画像,多視点画像)
- 3次元視覚システム VVV 研究開発 : 概要
- GPUと方向マップに基づく局所不変特徴量のオンライン抽出
- 自己組織化型状態空間モデルを用いた運動軌跡のフィルタリング
- 自己組織化型状態空間モデルを用いた運動軌跡のフィルタリング
- 2000-CVIM-122-3 非ガウス型状態空間モデルを用いた特徴点位置系列のフィルタリング
- 実環境における発話区間検出のための音響情報と画像情報の統合(音響と音声処理,音声強調,ロバスト音声認識)
- 実環境における発話区間検出のための音響情報と画像情報の統合(音響と音声処理,音声強調,ロバスト音声認識)
- RANSACを用いた車両運転時のイベント検出法(確率数値解析に於ける諸問題,VII)
- GPUによる方向マップを用いた局所不変特徴量の抽出
- 正規化LoG関数の近似に基づく局所不変特徴量の抽出(一般セッション6,三次元画像,多視点画像)
- 6自由度カメラ運動の下でのMultiperspective Imagingによるステレオ(一般セッション(1))
- 局所不変特徴量に基づく複数広告看板の認識(一般セッション3)
- 形状行列からの特徴選択に基づく動きの分割
- 1次元カメラモデルを用いたMultiperspective ImagingによるIBR(一般セッション(1))
- 1次元カメラモデルを用いたMultiperspective ImagingによるIBR(一般セッション(1))(CVのためのパターン認識・学習理論の新展開)
- フレーム毎の特徴点抽出に基づく特徴点の追跡
- QR分解を用いた特徴選択に基づく複数運動の分割
- クラスタ数推定のための最ゆう法に基づくロバストクラスタリング
- クラスタ数推定のための最ゆう法に基づくロバストクラスタリングの検討
- 音響情報と画像情報の統合による発話区間検出 : 基本的なコンセプト
- 話者位置推定のためのベイジアンネットによる音響情報と画像情報の統合
- GPUによる特徴点とエッジに基づく局所不変特徴量の抽出
- ステレオと反復的位置合わせを用いた任意形状セグメントの追跡
- 時空間幾何拘束を用いたセグメントの追跡
- 形状空間への直交射影行列と判別基準を用いた複数運動の分割
- 形状空間への直交射影行列と判別基準を用いた複数運動の分割
- 4K-3 因子分解法と判別基準を用いた複数運動の分割
- 形状行列からの特徴選択に基づく動きの分割
- ロバストクラスタリングに基づいた特徴空間と画像空間の併用による領域分割
- 領域分割に基づくボリュームデータの圧縮の検討 : オクトツリーと3次元任意形状DCTの適用
- 領域分割に基づくボリュームデータの圧縮方法の一検討
- ロバストクラスタリングによるinexhaustive領域分割の検討
- 混合分布モデルに基づくinexhaustiveな領域分割